Вход/Регистрация
Трещина в мироздании
вернуться

Даудна Дженнифер

Шрифт:

В совокупности эти новые сведения стали отличной подсказкой для ответа на вопрос, какую роль CRISPR играет у бактерий и архей. Авторы упомянутых статей обнаружили свидетельство в пользу того, что CRISPR, вероятно, является частью иммунной системы прокариот – адаптацией, позволяющей микроорганизмам успешно справляться с вирусами.

Напоследок, в качестве последнего козыря, Джилл выложила на стол самую новую статью о CRISPR. Опубликованная коллективом исследователей из Национальных институтов здравоохранения под руководством Киры Макаровой и Евгения Кунина [49] , она называлась “Гипотетическая иммунная система прокариот, основанная на РНК-интерференции” (A Putative RNA-Interference-Based Immune System in Prokaryotes). Этот заголовок моментально привлек мое внимание. Хотя в этой статье, как и в трех предыдущих, явно недоставало убедительных экспериментальных данных, ее авторы проделали значительную работу, собрав всю доступную информацию о CRISPR. Сопоставив результаты множества более ранних исследований с экспертной оценкой распространения CRISPR у различных видов, они собрали из этих кусочков заманчивую новую гипотезу о том, что РНК служит ключевой составляющей иммунной системы одноклеточных организмов, таких как бактерии, и что эта система может быть функционально сходной с одним из объектов моих исследований, РНК-интерференцией.

49

K. S. Makarova et al., “A Putative RNA-Interference-Based Immune System in Prokaryotes: Computational Analysis of the Predicted Enzymatic Machinery, Functional Analogies with Eukaryotic RNAi, and Hypothetical Mechanisms of Action”, Biology Direct 1 (2006): 7.

Джилл не смогла бы найти лучшей приманки, чтобы завлечь меня в свои исследования. Не только вся моя научная деятельность до того момента была посвящена изучению молекул РНК, но я еще все больше концентрировалась на процессах РНК-интерференции в человеческих клетках. А тут еще Макарова и Кунин предполагали, что CRISPR представляет собой бактериальный аналог РНК-интерференции. Если это было верно, то моя лаборатория отлично подходит для того, чтобы разобраться с этим новым загадочным биологическим явлением. А перспективы были более чем соблазнительными, поскольку никто еще не провел экспериментов для подтверждения или опровержения теорий о биологическом смысле CRISPR – все только и делали, что плодили эти теории. Для биохимиков, таких как я, это был идеальный момент, чтобы ввязаться в борьбу за понимание того, как работает и для чего нужен CRISPR.

В завершение встречи с Джилл я поблагодарила ее и пообещала быть на связи. Мне нужно было переварить всю новую информацию и просчитать плюсы и минусы добавления исследований CRISPR к текущим проектам моей лаборатории. Если я соглашаюсь заниматься этой темой, мне понадобится ученый, постоянно занятый координацией работы по ней, так как у меня самой не хватило бы времени возглавить новый проект: я была слишком занята руководством лабораторией в целом.

Мне также нужно было освежить свои знания о мире бактерий и о вирусах, которые поражают эти бактерии. Я опубликовала немало научных статей о вирусе гепатита С, я изучала вирус гриппа с новым постдоком в собственной лаборатории, и я знала, что механизм РНК-интерференции тесно связан с противовирусной защитой растений и животных. Но я никогда не изучала вирусы бактерий и даже не особенно задумывалась о них. Если я собираюсь присоединиться к исследованиям Джилл, это положение дел нужно было менять.

Фредерик Туорт, британский бактериолог, работавший в начале XX века, стал первым ученым, отметившим действие бактериальных вирусов. По иронии судьбы, изначально Туорт собирался исследовать не вирусы бактерий, а вирусы, поражающие животных и растения, – а они были открыты уже давно. Однако в ходе попыток извлечь вирусы из таких субстратов, как навоз и сено, а затем культивировать их, Туорт обнаружил странную колонию бактерий из рода Micrococcus. Складывалось ощущение, что бактерии больны; вместо того чтобы, как большинство других бактерий, плотными колониями расти на питательной среде в чашках Петри, их культуры выглядели водянистыми и прозрачными. Если Туорт брал мазок с водянистой колонии микрококков и переносил его на здоровую, последняя через какое-то время тоже приобретала стеклянистый вид, словно ее чем-то заразили. Туорт написал статью, в которой предположил, что инфекционный агент в данном случае имеет вирусную природу, но идея о том, что вирусы способны заражать бактерии, в то время казалась неслыханной, а у перемен, произошедших с культурами, могли быть и другие объяснения. Ученый не мог с полной уверенностью говорить, что конкретно поразило здоровые культуры.

В 1917 году, спустя два года после публикации статьи Туорта, вирусы бактерий заново открыл канадский врач Феликс д’Эрелль. Во время Первой мировой войны д’Эрелль служил во Франции, и ему поручили расследовать причину вспышки дизентерии, которая косила солдат одного из кавалерийских эскадронов. Стремясь выяснить, почему одни больные выздоравливают, а другие нет, д’Эрелль взял у пациентов образцы кала и подверг их обстоятельному, хотя и достаточно грубому анализу. Сначала он пропустил кровянистый стул своих подопечных через мелкоячеистый фильтр, чтобы удалить из него все твердые частицы – включая бактерии. Затем д’Эрелль налил немного отфильтрованной жидкости на культуры бактерий рода Shigella, вызывающих дизентерию. На следующий день он с удивлением обнаружил, что одна из культур заразных бактерий под фекальной жидкостью “растворилась подобно сахару в воде” – исчезла буквально за ночь [50] . Что еще интереснее, когда д’Эрелль поспешил в госпиталь узнать о состоянии пациента, у которого был взят этот образец кала, он обнаружил, что больному заметно лучше. Сопоставив эти факты, д’Эрелль заключил, что возбудителя дизентерии уничтожил некий паразит, которого ученый назвал бактериофагом (“пожирателем бактерий”); эта форма жизни должна была быть достаточно маленького размера, чтобы пройти через фильтр. Судя по всему, “бактериофаг” заражал бактерии фактически так же, как другие вирусы инфицировали растения или животных.

50

D. H. Duckworth, “Who Discovered Bacteriophage?”, Bacteriological Reviews 40 (1976): 793–802.

В последующие годы было открыто множество бактериофагов, или, сокращенно, фагов, и выяснилось, что каждый из них поражает свой конкретный вид бактерий. По мере накопления знаний о новых разновидностях фагов увеличивался ажиотаж вокруг так называемой фаговой терапии – идеи о том, что бактериофагов можно использовать для лечения микробных инфекций. Хотя некоторым ученым претила идея вводить живые вирусы в организм человека, клинические испытания показывали, что фаги “не замечают” человеческие клетки и видимых побочных эффектов у фаговой терапии нет. В 1923 году д’Эрелль помогал советским ученым организовать институт в Тбилиси [51] , исследования в котором были посвящены бактериофагам; во времена своего расцвета учреждение насчитывало более тысячи сотрудников, производящих тонны фагов в год для клинического использования [52] . В некоторых уголках мира фаговую терапию используют и по сей день – в Грузии в настоящее время фаги назначают при бактериальных инфекциях примерно в 20 процентах случаев [53] . Однако после того как в 1930-х были открыты антибиотики (а в 1940-х началось их массовое производство), этот способ терапии был быстро забыт, особенно на Западе.

51

Институт бактериофагов в Тбилиси основал Георгий Григорьевич Элиава в 1923 году. Д’Эрелль приехал туда значительно позже – в 1934-м. Тем не менее в 1923-м двое ученых уже были знакомы.

52

C. Zimmer, A Planet of Viruses. Chicago: University of Chicago Press, 2011. Книга переведена на русский: Карл Циммер. Планета вирусов / Пер. А. Рангулова. Ростов-на-Дону: Феникс, 2012.

53

G. Naik, “To Fight Growing Threat from Germs, Scientists Try Old-fashioned Killer”, Wall Street Journal, January 22, 2016.

Хотя бактериофаги нашли лишь ограниченное применение в медицине, для генетиков они стали настоящим подарком судьбы. К тому моменту, когда ученые с помощью новых электронных микроскопов с большим увеличением смогли впервые увидеть фагов (это случилось в 1940–1950-е годы), эти вирусы вкупе с бактериями-жертвами уже предоставили очередное доказательство дарвиновской теории естественного отбора. Они помогли установить, что именно ДНК, а не белки, служит “молекулой наследственности” в клетках. Тот факт, что генетический код триплетен (то есть каждые три “буквы” ДНК обозначают одну аминокислоту в белке), был впервые продемонстрирован на примере фагов; эксперименты с последними позволили также выяснить, как “включаются” и “выключаются” гены внутри клетки. Даже открытие Джошуа Ледерберга (он обнаружил, что вирусы могут вносить чужеродные гены в инфицированные ими клетки, и это стало одним из ранних подступов к генной терапии) было сделано благодаря фагу, специализирующемуся на бактериях рода Salmonella. Во многом именно эксперименты с вирусами бактерий заложили основы молекулярной генетики.

Кроме того, изучение фагов послужило толчком к революции в молекулярной биологии 1970-х годов. Исследуя иммунные механизмы, с помощью которых бактерии дают отпор фаговым инфекциям, ученые обнаружили класс ферментов, называемых эндонуклеазами рестрикции; их можно “настроить” таким образом, чтобы они разрезали фрагменты искусственно синтезированной ДНК (это было показано в простых экспериментах вне живых объектов). Используя сочетание этих ферментов с другими ферментами, выделенными из инфицированных фагами клеток, исследователи сумели создать и клонировать искусственные молекулы ДНК в лабораторных условиях. Одновременно с этим геномы фагов послужили прекрасной мишенью для только что разработанных технологий секвенирования ДНК. В 1977 году Фред Сенгер и его коллеги успешно определили последовательность всех нуклеотидов ДНК в геноме фага ФX174. Двадцать пять лет спустя тот же фаг снова оказался в центре внимания: он стал первым объектом, чей геном был синтезирован с нуля [54] .

54

G. P. C. Salmond and P. C. Fineran, “A Century of the Phage: Past, Present and Future”, Nature Reviews Microbiology 13 (2015): 777–786.

  • Читать дальше
  • 1
  • ...
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: