Вход/Регистрация
Насосы интуиции и другие инструменты мышления
вернуться

Деннетт Дэниел

Шрифт:
упражнение 1

а. Сколько шагов потребуется регистровой машине, чтобы сложить 2 + 5 и получить 7, выполняя программу 1 (считая Кон отдельным шагом)?

б. Сколько шагов потребуется машине, чтобы сложить 5 + 2?

(Какой из этого можно сделать вывод?) [29]

29

Решения задач и упражнений ищите в приложении в конце книги.

Этот процесс можно изобразить наглядно, построив так называемый граф потока. Каждый кружок обозначает инструкцию. Число в кружке обозначает адрес регистра, с которым необходимо произвести манипуляции (а не содержимое регистра), “+” обозначает инструкцию Инк, а “–” – инструкцию Деп. Программа всегда начинается с , альфы, и завершается, когда достигает , омеги. Стрелки показывают переход к следующей инструкции. Обратите внимание, что каждая инструкция Деп имеет две исходящих стрелки, одну для направления, в котором двигаться, если декрементировать содержимое регистра возможно, а другую – если невозможно, потому что содержимое регистра 0 (переход на ноль).

Теперь давайте напишем программу, которая просто перемещает содержимое одного регистра в другой регистр:

программа 2: MOVE [4,5]

Вот граф потока:

Обратите внимание, что первый цикл этой программы очищает регистр 5, так что, каким бы ни было его содержимое в самом начале, оно никак не повлияет на то, что окажется в регистре 5 ко второму циклу (циклу сложения, в ходе которого содержимое регистра 4 прибавляется к 0 в регистре 5). Этот начальный шаг называется обнулением регистра и представляет собой весьма употребительную стандартную операцию. Вы постоянно будете использовать ее, чтобы готовить регистры к использованию.

Третья простая программа копирует содержимое одного регистра в другой регистр, оставляя изначальное содержимое нетронутым. Изучите граф потока, а затем саму программу:

программа 3: COPY [1,3]

Это явно не самый очевидный способ копирования, поскольку мы осуществляем операцию, сначала перемещая содержимое регистра 1 в регистр 3, затем делая копию в регистре 4 и, наконец, перемещая эту копию обратно в регистр 1. Но это работает. Всегда. Каким бы ни было содержимое регистров 1, 3 и 4 в самом начале, когда программа остановится, содержимое регистра 1 останется на месте, а копия этого содержимого – в регистре 3.

Если принцип работы этой программы вам не очевиден, возьмите несколько чашек, чтобы сделать регистры (подпишите номер каждой чашки, ее адрес), и горстку монеток (или бобов) и “вручную смоделируйте” весь процесс. Положите по несколько монеток в каждый из регистров и обратите внимание, сколько именно монеток вы положили в регистр 1 и регистр 3. Если вы будете в точности следовать программе, когда вы закончите, количество монеток в регистре 1 будет таким же, каким оно было изначально, и такое же количество монеток будет лежать в регистре 3. Очень важно, чтобы вы усвоили базовый принцип работы регистровой машины и вам не пришлось больше ломать над ним голову, поскольку мы собираемся использовать этот новый навык в дальнейшем. Выделите несколько минут и станьте регистровой машиной (как актер может стать Гамлетом).

Я замечаю, что некоторые мои студенты совершают простую ошибку: им кажется, что при декрементировании регистра монетку, которую они только вынули из регистра n, нужно положить в какой-нибудь другой регистр. Нет. Декрементированные монетки просто возвращаются в общую кучу, в ваш “бесконечный” запас монеток для использования в этих простых операциях сложения и вычитания.

Научившись перемещать, копировать и обнулять содержимое регистров, мы можем улучшить нашу программу сложения. Программа 1 помещает верный ответ на задачу на сложение в регистр 2, но в процессе уничтожает изначальное содержимое регистров 1 и 2. Возможно, нам нужна более сложная программа сложения, которая сохраняет эти значения для последующего использования, помещая ответ в другой регистр. Попробуем прибавить содержимое регистра 1 к содержимому регистра 2, поместить ответ в регистр 3 и оставить содержимое регистров 1 и 2 нетронутым.

Вот граф потока, показывающий, как этого добиться:

Проанализируем циклы, чтобы понять, что делает каждый из них. Сначала мы обнуляем регистр ответа, регистр 3, а затем обнуляем дополнительный регистр (регистр 4), который станет временным хранилищем, или буфером. После этого мы копируем содержимое регистра 1 в регистры 3 и 4 и перемещаем это содержимое обратно из буфера в регистр 1, восстанавливая его (и в процессе обнуляя регистр 4, чтобы снова использовать его в качестве буфера). Затем мы повторяем эту операцию с регистром 2, фактически прибавляя содержимое регистра 2 к содержимому, которое мы уже переместили в регистр 3. Когда программа останавливается, буфер 4 снова оказывается пуст, ответ находится в регистре 3, а два числа, которые мы складывали, – на своих изначальных местах, в регистрах 1 и 2.

Вот написанная на РПА 13-шаговая программа, которая переводит всю информацию с графа потока на язык, понятный блоку обработки данных:

программа 4: ADD [1,2,3] без разрушения

Я не буду советовать вам вручную смоделировать эту программу, используя чашки и монетки. Жизнь коротка, поэтому, когда вы усвоите все базовые процессы, вам можно будет пользоваться вспомогательным устройством RodRego, регистровой машиной, которую можно скачать по ссылке http://sites.tufts.edu/rodrego/.

  • Читать дальше
  • 1
  • ...
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: