Шрифт:
Сегодня мы точно знаем, что можно использовать тепловой двигатель для получения работы за счет тепла. Если же вместо этого мы возьмем то же самое количество тепла и позволим ему свободно пройти через тепловой двигатель, окажется, что работа не была произведена: она попросту потерялась. Этот факт не давал Томсону покоя. Безусловно, в случае обратимого теплового двигателя Карно из данного количества теплоты производится максимальное количество работы, в то время как, согласно Фурье, из свободного потока тепла получается минимальное количество возможной работы – а фактически не получается вовсе. В последнем случае это выглядит так, будто работа просто исчезла, и Томсон хотел знать точно, куда именно. Он пишет:
«Причина, по которой я не могу принять теорию, так яро поддерживаемую господином Джоулем, заключается в том, что механическое воздействие, с точки зрения теории Карно абсолютно теряющееся при проводимости, не учитывается в динамической теории (Джоуля) никоим образом, кроме утверждения, что оно не теряется».
В 1852 году Томсон опубликовал статью «Об универсальной природной тенденции к рассеиванию механической энергии». В ней Томсон утверждает, что не вся энергия одинакова [64] . Какую-то энергию можно использовать для работы, а какую-то – нет. Давайте для примера сравним энергию реки с энергией океана. Несомненно, океан обладает большей энергией, чем река. Чтобы это понять, достаточно просто посмотреть на океан и на то, как его волны бьются о берег. Но как же извлечь эту энергию и произвести с ее помощью работу?
64
Во вступлении к работе Томсон делит энергию на два вида, один из которых он называет «статическим», а другой – «динамическим». Согласно Томсону, статическая энергия лучше подходит для произведения работы, в то время как динамическая энергия подходит для этого хуже, что, впрочем, не мешает производить работу и с ее помощью.
Существует множество способов сделать это, но при каждом из них придется иметь дело с хаотичной природой двигающихся волн. Изменение размера, силы, направления и длительности океанских волн позволяют извлечь огромный объем энергии, который можно преобразовать в работу [65] . С другой стороны, устойчивый и постоянный поток реки – гораздо более подходящий кандидат для получения энергии. Именно поэтому мы строим гидроэлектростанции на реках, а не в океанах [66] .
65
Можно произвести работу благодаря океану, например, катаясь на доске для серфинга.
66
Другой пример – энергия, заключенная в молекулах, из которых состоит воздух. Существует множество других подобных видов энергии, но случайное движение молекул веществ исключает возможность использовать эту энергию для произведения работы.
Томсон делает вывод о том, что в природе чаще встречается рассеянная и неупорядоченная энергия; как только она превращается в рассеянную (как в случае с океаном), становится практически невозможно с ее помощью произвести полезную работу. Фактически если вы хотите извлечь энергию и это возможно, потребуется произвести работу, чтобы сделать это. Именно это показывает нам, что природа отдает предпочтение рассеиванию энергии.
Закон рассеивания Томсона (томсоновское рассеивание) объясняет поведение энергии, которая не учитывается в первом начале. Представьте себе тепловой двигатель Карно, где для производства работы мы можем использовать только часть тепла, в то время как оставшуюся часть неизбежно поглощает окружающая среда. Таким образом, даже в практически идеальной модели, где используется наиболее эффективный тепловой двигатель, Вселенная все еще требует утечки части тепла. Обойти этот закон, который Томсон считает «универсальной тенденцией», не представляется возможным. Если мы не пытаемся использовать энергию для работы теплового двигателя, то она попросту рассеется, как гласит теория Фурье.
Таким образом, в обоих случаях некоторое количество теплоты рассеивается, но не теряется. Рассеянное тепло уходит в случайном направлении – подобно движению волн океана. Таким образом, не вся энергия одинакова; природа стремится потратить (рассеять) такую энергию, как, например, тепло; и эта потраченная энергия не теряется и не уничтожается, она просто переходит в атомы, составляющие материю, что делает ее недоступной для выполнения работы.
Из этой концепции можно сделать вывод, что «упорядоченная» энергия обладает лучшими качествами по сравнению с «неупорядоченной», поскольку может быть использована для работы. Давайте еще раз обратимся к нашему примеру с океаном и его хаотичной энергией, заключенной в движении волн, и сравним ее с более упорядоченной энергией реки, которая может выполнять работу. Сравнение показывает нам, что рассеивание энергии является процессом ее «деградации» – от лучшего к худшему, от порядка к беспорядку.
Первое начало гласит, что энергия не создается и не уничтожается, но переходит из одной формы в другую, таким образом сохраняясь. Тем не менее закон рассеивания Томсона дает понимание того, что с энергией происходит больше процессов, чем описывает первое начало. Энергия не только сохраняется, но и стремится к рассеиванию. Более того, это рассеивание возникает в результате перехода от более высокого качества (упорядоченности) к низкому качеству (неупорядоченности). Следовательно, у энергии есть «предпочтительное направление», она стремится к рассеиванию, и, чтобы заставить ее двигаться в обратном направлении, необходимо выполнить некую работу [67] . В самом деле, закон рассеивания Томсона, вероятно, был его наиболее важным вкладом в термодинамику. Фактически он является основой второго начала термодинамики.
67
Только лишь добавление энергии в форме работы не сможет повернуть вспять необратимые процессы; в этом случае они действительно необратимы.
Глава 7
Предпочтительное направление
Энтропия – указатель природы
У природы, кажется, есть «предпочтительное направление» для определенных процессов. Чашка горячего кофе остывает, отдавая тепло в окружающую среду. Если добавить в эту же чашку сливки, они смешаются с кофе независимо от того, будете вы их размешивать или нет. Спустя некоторое время кофе и окружающая среда будут одинаковой температуры, а сливки и кофе станут однородной жидкостью.
Как все мы знаем, опыт учит нас, что тепло не станет внезапно возвращаться из окружающей среды обратно в кофе, заставляя его опять нагреться. Так и сливки не отделятся внезапно от кофе. Если мы уроним чашку с кухонного стола, она, скорее всего, разобьется после удара об пол. Мы можем догадаться, что сколько бы мы ни ждали, стакан (к нашему разочарованию) вдруг не станет целым, запрыгнув при этом на стол. Нам все же придется убирать осколки стакана. Эти и им подобные процессы называют необратимыми – у них есть предпочтительное направление течения, которое диктуют законы природы, и обратное течение просто не является предпочтительным.