Шрифт:
Deep Mind – еще один знаковый для Alphabet термин, появившийся в 2014 году. Британский стартап специализировался на симуляторах нейронных сетей мозга и обучал их играть в игры. Исследователи Deep Mind наблюдали, как мозг решает когнитивные, то есть связанные с познанием, задачи во время игры, а данные использовали для обучения машин. Технология стала сенсацией в 2016 году, когда оснащенный ей компьютер победил профессионального игрока в го [30] .
30
Wired, Google’s AI Wins First Historic Match: https://www.wired.com/2016/03/googles-ai-wins-first-game-historic-match-go-champion/
Сегодня на Deep Mind работают интеллектуальные программы Alphabet. Они управляют охлаждающим оборудованием дата-центров, оптимизируют расход аккумулятора мобильных устройств на Android и т. д. А еще они участвуют в офтальмологической программе, о которой речь шла выше.
Alphabet и Google считают ИИ отправной точкой для революции компьютерных технологий.
• Компании уверены, что влияние следующей волны на общество будет еще более значительным, чем появление интернета.
• Большой объем данных позволил Alphabet разработать первые в своем роде услуги: поиск, показы рекламы, языковой перевод, обработку речи, «умные дома» и беспилотные автомобили.
• Благодаря инфраструктуре и вычислительной мощности для обработки большого объема данных на необходимой для поисковика супервысокой скорости Google применила все эти возможности к ИИ.
• Финансовые ресурсы Google позволили воспользоваться всеми качественно новыми разработками исследовательских групп и стартапов в сфере ИИ, такими как глубокое обучение.
3. Amazon. Глубокое обучение повышает показатели бизнеса
Основателю книжного интернет-магазина Amazon Джеффу Безосу было все равно, чем торговать: он хотел подняться на буме онлайн-продаж, который предвидел. Сегодня Amazon – международная торговая площадка и ведущий мировой провайдер облачных вычислений. Компания занимает третье место по выручке и рыночной капитализации. Помимо онлайн-магазина и предоставления облачных услуг компания владеет издательским подразделением, кино- и телевизионной студией и производит бытовые товары: электронные книги Kindle, планшетные компьютеры и медиаплееры Fire и умные колонки Amazon Echo.
С начала 1990-х Amazon использовала прогностическую аналитику. И внедряла ее везде – от знаменитого рекомендательного сервиса до оптимизации маршрута роботов в центрах исполнения заказов. В начале последнего десятилетия растущий потенциал машинного обучения заставил интернет-гиганта пересмотреть все аспекты деятельности. Безосу мало было обойти Walmart и Target на рынке продаж – он претендовал на уровень Google, Facebook и Apple и первое место в технологической сфере. Значит, надо было внедрять глубокое обучение в ключевые сервисы и расширять деятельность. Так появились умные колонки Echo с виртуальным помощником Alexa и бескассовые супермаркеты.
Среди дальнейших планов – доставка заказов автоматизированными дронами и «опережающая доставка» (до заказа) товаров, которые могут понравиться клиенту.
Amazon первой внедрила рекомендательный сервис, то есть предложение товаров на основе предыдущих покупок. Это с самого начала было основой бизнес-стратегии компании. За годы аналитические инструменты усовершенствовались, но до сих пор делят пользователей на категории по собранным о них данным, моделируют поведение и предлагают товары, популярные у покупателей из той же категории.
В начале 2014 года компания запустила крупную модернизацию существующей рекомендательной системы: начала внедрять алгоритмы глубокого обучения в прогностические инструменты [31] . Сейчас глубокое обучение встроено в большинство функций сайта, разработанных для персонификации покупательского опыта: «эти товары часто покупают вместе», «купившие этот товар также приобрели…» и т. д.
Глубинные слои нейронных сетей учатся так же, как человеческий мозг, – на данных, которые через них проходят. Алгоритмы постоянно совершенствуются в поиске паттернов и связанных данных – в случае Amazon это данные о транзакциях и покупательском поведении. На этих алгоритмах работают рекомендательный сервис Amazon, поиск Google, лента Facebook и подбор фильмов Netflix. Как и соперники в борьбе за первое место, Amazon делает ставки на глубокое обучение – двигатель революции ИИ.
31
Wired, Inside Amazon’s Artificial Intelligence Flywheel: https://www.wired.com/story/amazon-artificial-intelligence-flywheel/
Amazon использует ИИ в центрах исполнения заказов – на складах, где люди и роботы ежедневно собирают и упаковывают миллионы посылок. С виду складские роботы ничем не примечательны – это приземистые передвижные платформы [32] . Но благодаря алгоритмам глубокого обучения они шустро снуют по складским лабиринтам, находят на полках нужный товар и привозят сотруднику, который комплектует заказ. Робот способен действовать в условиях, неудобных для человека, поэтому Amazon расширяет складские площади и ускоряет выполнение заказов, а значит, растет и доход. В настоящее время в центрах исполнения заказов Amazon по всему миру используются сотни тысяч роботов [33] .
32
Robots, Drive Unit: https://robots.ieee.org/robots/kiva/?utm_source=spectrum
33
IEEE Spectrum, Brad Porter, VP of Robotics at Amazon, on Warehouse Automation, Machine Learning, and His First Robot: https://spectrum.ieee.org/automaton/robotics/industrial-robots/interview-brad-portervp-of-robotics-at-amazon