Шрифт:
Только теперь магическая сумма математического квадрата равна 65, а палиндромы составлены из слов русского языка. Вот еще одно нераспаханное поле: составить квадраты 4x4, 5x5 с осмысленной фразой-палиндромом на русском языке.
В дальнейшем палиндромы встречались на предметах цилиндрической или сферической формы в виде надписей, которые можно было читать, вращая предмет в любую сторону. От них пошли замкнутые фигуры или «круговертни».
Эти примеры составил математик А.В. Болтрукевич. Если читать их в направлении по стрелке от указанной буквы, то можно прочитать слова аптека и пакет, пальто и лапоть, Африка и факир.
В. В. Маяковский подарил Л. Ю. Брик кольцо, на внутренней стороне которого по кругу были многозначительно выгравированы ее инициалы Л Ю Б, образующие круговертень ЛЮБЛЮ. Маленький, но многозначительный факт истории.
Палиндромами увлекались люди еще до изобретения кроссвордов и сканвордов, считая, что это занятие развивает чувство слова, умение видеть его в глубину, знать его способности выражать множество оттенков смысла и сочетаться с другими словами.
Дети, которые только учатся читать, часто читают вывески магазинов и учреждений наоборот, им интересно, что при этом получается. Потом дети вырастают и перестают заниматься словесной «ерундой», а жаль.
В последнее десятилетие о палиндромах писали журналы «Наука и жизнь» и «Квант», «Загадочная газета» и «Комсомольская правда», печатая много интересных находок своих читателей. Коллективное творчество дает уникальные результаты. Вот несколько примеров предложений палиндромов. В эпиграф вынесен палиндром, который был популярен в нашей стране в начале XIX века, так возвышенно говорили о России. Теперь находят другие темы.
Ленин ел.
Огонь – лоб больного!
Театр тает.
Искать такси.
Да, искать такси – ад.
Осело колесо.
Леша на полке клопа нашел.
На в лоб, болван!
Я не реву – уверен я.
Любители словесных игр не ограничиваются отдельными предложениями, вот пример короткого сочинения о вопросах питания:
Ел еж желе,
А сыр крыса,
Ишак каши,
А жук ужа.
Ужи жижу,
Ил ели.
Я
Мед ем
И щи.
А щи пища.
Автор Алексей Кашеваров
Примеры палиндромов из классики:
«А роза упала на лапу Азора».
А. А. Фет
«Я разуму уму заря.
Я иду с мечем, судия».
Г. Р. Державин
Море могуче. В тон ему, шумен, отвечу Гомером:
Море, веру буди – ярок, скор, я иду буревером.
Д. Авалиани
«Хорошо. Шорох.
Утро во рту.
И клей елки
Течет».
С. Кирсанов – отрывок стихотворения
У Семена Кирсанова несколько палиндромических стихотворений и интересные размышления на эту тему. На русском языке палиндромы писали В. В. Хлебников, В. Я. Брюсов, И. Л. Сельвинский, А. А. Вознесенский.
Через «Sator Arepo» у нас произошел плавный и незаметный переход от отдельный слов палиндромов к палиндромам предложениям. Пошли фразы, в которых каждое отдельное слово не являлось палиндромом, а предложение в целом, если не обращать внимания на расстановку пробелов, палиндромом было. В математике к понятию палиндрома нужен другой подход, потому что, в отличие от слова, любое число, написанное произвольным набором цифр, имеет смысл, например, 1234567890987654321 – вполне реальное число. Только содержательная сторона, изюминка идеи отражения здесь отсутствует, посмотришь на это число, и скажешь: «Ну, и что?». Можно поставить вопрос так: найти квадраты целых чисел, которые неизменно читаются как слева направо, так и наоборот. Некоторые из них найти легко: 112=121, 1112=12321, 11112=1234321. Все получившиеся числа палиндромы, и данное правило применимо к любому числу единиц, не превосходящему девяти. Есть и другие случаи, но их найти труднее, например 2642=69696, 8362=698896, 22852=5221225. Одним вопросом намечено целое направление для поиска числовых палиндромов с определенным смыслом.
Есть палиндромы и среди кубов, например 113=1331, причем в большинстве случаев, если куб – палиндром, то и кубический корень из него – тоже палиндром. Далее 114=14641. Ожидаемого результата с пятой степенью не получается: 115=161051 – не палиндром. Поиск палиндромов среди пятых степеней, пока не дал результатов. Высказана гипотеза, согласно которой не существует чисел палиндромов вида xk при k>4. Её кому-то нужно доказать или опровергнуть [??]
Попробуйте поискать, поэкспериментировать, используя электронную таблицу Excel в офисном пакете. Там есть встроенная функция степени и таблицу чисел легко вводить методом протягивания. Считать не придется, результат определяется только визуально. Если вы владеете любым простейшим языком программирования типа Basic, то можете запрограммировать и вывод итогового палиндрома, если он найдется, конечно. Работа интересная, в мире столько интересного, делал бы сам, но оставляю вам.