Шрифт:
К={а, , б, в, г, , д, е, ё, ж, з, и, й, к, , л, м, н, , о, , п, р, с, т, у, , , ф, х, h, ц, ч, ш, щ, ъ, ы, i, ь, э, ю, я}
[?-1]
Определите множества, которые получатся в результате следующих операций:
Примечание: В данном упражнении нас интересует только графическая сторона вопроса. Если рассматривать алфавиты так, как они записаны здесь – маленькими буквами, то у русского и латинского алфавитов есть одинаковые знаки: а, с, е, …, поэтому их пересечение не является пустым множеством.
[?-2]
Верны ли следующие утверждения:
[?-3]
Постройте диаграммы Венна для следующих множеств, считая универсальным множество всех алфавитов:
В процессе работы над книгой меня постоянно волновал вопрос: кому это будет нужно? Учитель-словесник отмахнется от математики, зачем ему теория множеств, учитель математики отмахнется от букв, алфавитов, слов, потому что ему всегда удобнее объяснять материал на числах и получится мой труд ради собственного удовольствия. Изрядную долю сомнений вносили знакомые учителя, зачастую именно так и высказываясь. Но меня не покидает надежда, что молодое поколение учителей будет мыслить по-другому, шире и разностороннее. Ученикам никогда не будет интересна нудная, хотя и необходимая, зубрежка правил, и, чтобы не отбить окончательно у них желание учиться, нужно использовать любую возможность сделать свой предмет увлекательным. Кому станет хуже, если на математике ученики повторят русский алфавит, распределение его букв по видам, узнают новые алфавиты.
Топология букв
Еще немного чистой математики, причем не изучаемой в школе, применительно к языковому исходному материалу. Посмотрим на буквы с точки зрения топологии.
Топология (греч. topos – место и logos – слово, понятие, учение) – раздел математики, изучающий наиболее общие свойства геометрических фигур (свойства, не изменяющиеся при любых непрерывных преобразованиях фигур).
Представьте себе, что большие печатные буквы сделаны из гибкого и растяжимого материала, например из проволоки, и их можно распрямлять, растягивать, выводить из плоскости, переворачивать и переносить в другое место. Подобные преобразования называются топологическими. Две буквы называются топологически эквивалентными, если их можно перевести друг в друга такими непрерывными деформациями (не разрешается разрезать или склеивать буквы!). Например, возьмем проволочную букву Г, из нее легко можно сделать буквы С или П, распрямив и согнув по-другому, но нельзя сделать букву О, для этого проволоку нужно спаять или склеить, а эта операция запрещена. По признаку топологической эквивалентности все буквы можно разбить на несколько классов. Буквы Г, З, И, Л, М, П, С относятся к простейшему классу, распрямив, их можно все превратить в отрезок прямой ________. Если распрямить буквы Е, Т, У, Ц, Ч, Ш, Э получатся три отрезка, спаянные одним концом в общей точке и так далее.
[?-4]
Попробуйте разделить все буквы русского алфавита, цифры и буквы английского алфавита на топологические классы эквивалентности (кроме, состоящих из нескольких не соединяющихся элементов, букв Ё, Й, Ы). Для упрощения работы, показаны характеристические фигуры каждого класса для букв русского языка.
Не буквой единой…
Если посмотреть на стандартную клавиатуру компьютера, то главное место на ней занимают буквы русского и английского алфавитов с возможностью переключения с одного алфавита на другой и со строчных букв на прописные. Но это не всё. Для записи речи используются в языке знаки препинания или пунктуации.
Знаки препинания – это элементы письменности, выполняющие вспомогательные функции разделения (выделения) смысловых отрезков текста, предложений, словосочетаний, слов, частей слова, указания на грамматические и логические отношения между словами, указания на коммуникативный тип предложения, его эмоциональную окраску, законченность, а также некоторые иные функции. Знаки препинания, синтаксически оформляющие текст, облегчают его зрительное восприятие и понимание, а при воспроизведении текста вслух помогают осуществить его интонационное оформление (интонация, смысловые паузы, логические ударения).
Какие же знаки мы найдем на клавиатуре, следовательно, и в печатных текстах? Точка, запятая, точка с запятой, двоеточие, многоточие, восклицательный знак, вопросительный знак. Это наиболее распространенные знаки препинания, которые не имеют каких-то модификаций и не требуют особых пояснений. Другие же используемые знаки бывают весьма неоднозначны и требуют некоторых пояснений.
Дефис – короткая черточка для разделения каких-либо слов и переносов, ничем не отбивается от соседних букв. Обратите внимание на разницу в знаке тире и дефиса в данном тексте. Тире стоит между первыми двумя словами текущего абзаца. Оно отбивается пробелами от слов с обеих сторон. Как только мы сделали отбивку пробелами, черточка сразу становится длиннее, хотя набиралась с помощью той же клавиши, что и дефис. Между двумя датами ставится тоже тире, но оно не отбивается пробелами и поэтому зрительно выглядит как дефис (1945-2020), но называется короткое тире.
Богаты в своем разнообразии знаки скобок. Скобки – это чаще всего парные знаки. Обычно первая в паре скобка называется открывающей, а вторая – закрывающей. Самые распространенные виды скобок круглые , квадратные [ ], фигурные { }. Далее существуют скобки угловые. На компьютерной клавиатуре для них нет специальных клавиш, но их можно поставить с помощью имеющихся математических знаков меньше и больше < >. В «вордовском» редакторе формул угловые скобки есть. Можно поставить скобки косые, используя знак косую черту – «слеш», причем есть косая черта с наклоном в ту или иную сторону / /, \ \. Можно поставить скобки прямые, у математиков это будет означать модуль числа | |, или даже двойные прямые скобки || ||.