Шрифт:
Не всякий ученый способен оценить любой вклад. Сетевая структура устраняет и это затруднение. Предположим, ученый М объявляет о новом результате. Он знает свой чрезвычайно специализированный предмет лучше всех на свете; кто же в таком случае может обладать компетенцией, необходимой, чтобы оценить его работу? Но рядом с ученым М работают ученые L и N. Поскольку предметы их исследований частично пересекаются с областью работы М, они достаточно хорошо понимают его работу, чтобы судить о ее качестве и достоверности, а также понять, как она соотносится с общей научной картиной. Кроме L и N есть еще и другие ученые, K и O, а также J и P, которые достаточно хорошо знают L и N, чтобы решить, можно ли доверять их суждению о работе М. И эта цепочка продолжается дальше и дальше, вплоть до ученых A и Z, которые работают в области, почти совершенно отличной от сферы интересов М.
«Эта сеть и есть вместилище научного мнения, – подчеркивал Полани, – мнения, не присущего разуму какого-то отдельного человека, но разделенного на тысячи разных фрагментов, мнения, которого придерживаются множественные индивидуумы, каждый из которых поддерживает мнение другого опосредованно, полагаясь на согласованные цепочки, которые связывают его со всеми остальными через последовательность пересекающихся сообществ» [124] . Наука, подразумевал Полани, работает как гигантский мозг, образованный связанными между собою индивидуальными разумами. Это и есть источник ее кумулятивной и, по-видимому, непреодолимой силы. Но сила эта, как тщательно подчеркивают и Полани, и Фейнман, достается ценой добровольного самоограничения. Науке удается решать трудную задачу поддержания сети политических связей между людьми разного происхождения и разных взглядов и даже еще более трудную задачу определения правил шахматной игры, в которую играют боги, благодаря жестким ограничениям области своей деятельности. «Физика, – как однажды напомнил группе своих коллег Юджин Вигнер, – даже не пытается дать нам полную информацию о событиях, которые происходят вокруг нас: она дает нам информацию о корреляциях между этими событиями» [125] .
124
Ibid.
125
Wigner (1981), p. 8.
Что по-прежнему оставляет открытым вопрос о том, на какие стандарты ориентируются ученые, когда выносят оценку работе своих коллег. Хорошая наука, оригинальная работа всегда выходят за пределы общепринятых мнений, всегда содержат элемент несогласия с ортодоксальными взглядами. Как же в таком случае выразители ортодоксальных взглядов могут оценить их по достоинству?
Полани предположил, что науку защищает от окостенения существующая в ней структура учителей и учеников. Учитель прививает ученику высокие стандарты суждений. В то же время ученик обучается доверять своему собственному суждению: он узнает о возможности и необходимости несогласия. Из книг и лекций можно узнать правила; учителя обучают осознанному бунту, хотя бы на примере своей собственной оригинальной – и, следовательно, бунтовщической в этом смысле – работы.
Ученики познают три общих критерия научного суждения [126] . Первый из этих критериев – правдоподобие. Он позволяет отсеять безумцев и жуликов. Он также может приводить (и иногда приводил) к отбрасыванию идей, слишком оригинальных, чтобы ортодоксальное мышление могло осознать их, – но чтобы наука вообще могла работать, с этой опасностью приходится мириться. Второй критерий – научная ценность, составная величина, содержащая в равных долях точность, важность для всей системы науки или той ее ветви, к которой относится данная идея, и степень интереса, который порождает сущность работы. Третий критерий – оригинальность. Патентные эксперты оценивают оригинальность изобретения по тому, насколько неожиданным оно оказывается для специалиста, знакомого с соответствующей областью. Ученые оценивают новые теории и новые открытия подобным же образом. Правдоподобие и научная ценность позволяют оценить качество идеи по стандартам ортодоксальной точки зрения; оригинальность определяет степень ее отклонения от ортодоксальности.
126
Ср. обсуждение в Polanyi (1962), p. 10 и далее.
Предложенная Полани модель открытой научной республики, в которой каждый из ученых судит о работе своих коллег по общепризнанным и поддерживаемым всеми критериям, объясняет, почему идея атома обладала столь неустойчивым статусом в физике XIX века. Она была правдоподобна; она обладала значительной научной ценностью, особенно с системной точки зрения; однако никаких неожиданных открытий, касающихся атома, еще никому не удалось совершить. По крайней мере, таких открытий, которые были бы достаточно убедительными для сети из всего лишь приблизительно тысячи мужчин и женщин всего мира, которые в 1895 году называли себя физиками [127] , – а также для более многочисленной сети химиков, связанной с первой.
127
Ср. Segre (1980), p. 9.
Время атома было на подходе. В XIX веке самые неожиданные открытия в фундаментальной науке делались в химии. В первой половине века XX источником великих неожиданностей в фундаментальной науке стала физика.
В 1895 году, когда юный Эрнест Резерфорд приехал с другого конца света в Кавендишскую лабораторию, чтобы изучать физику в надежде составить себе имя в этой области, Новая Зеландия, которую он покинул, была еще территорией малоосвоенной. Инакомыслящие британские ремесленники и крестьяне, а также некоторые искатели приключений из дворян заселили этот суровый вулканический архипелаг в 1840-х годах, потеснив приплывших из Полинезии маори, которые открыли его за пять столетий до этого. Серьезное сопротивление маори, вылившееся в несколько десятилетий кровавых стычек, закончилось лишь в 1871 году, в котором и родился Резерфорд. Он учился в недавно созданных школах, гонял коров на дойку, ездил верхом в буш охотиться на диких голубей, сидящих на покрытых ягодами ветвях деревьев миро [128] , помогал на льнопрядильной фабрике своего отца в Брайтуотере, на которой дикий лен, собранный в местных болотах, замачивали, мяли и трепали, получая из него льняные нити и очески. Два младших брата Резерфорда утонули; вся семья в течение нескольких месяцев искала их на берегах Тихого океана вокруг фермы.
128
Подокарп, или ногоплодник, ржавый, Prumnopitys ferruginea, вечнозеленое хвойное дерево, растущее в Новой Зеландии.
Его детство было трудным и здоровым. Резерфорд увенчал его стипендиями на обучение – сначала в скромном колледже имени Нельсона в близлежащем городе Нельсоне на Южном острове, затем в Университете Новой Зеландии, в котором он в возрасте двадцати двух лет получил магистерскую степень сразу по двум специализациям, математике и физике. Он был человеком крепким, энергичным и сообразительным, и все эти качества потребовались ему на пути из новозеландской сельской глуши к руководству британской наукой. Еще одно, более тонкое качество – проницательность деревенского парня в сочетании с характерной для далеких от цивилизации мест глубокой неиспорченностью – сыграло важнейшую роль в тех беспрецедентных научных открытиях, которые он совершил в течение своей жизни. Как сказал его воспитанник Джеймс Чедвик, главной отличительной чертой Резерфорда был «его талант удивляться» [129] . Он сохранил это качество, несмотря на все свои успехи и несмотря на тщательно замаскированную, но иногда чрезвычайно болезненную неуверенность в себе [130] , грубый шрам, оставленный его колониальным происхождением.
129
Chadwick (1954), p. 440. Некоторые подробности детства Резерфорда позаимствованы из Eve (1939), Feather (1940) и Crowther (1974).
130
Эта формулировка принадлежит Ч. П. Сноу, Snow (1967), p. 11.
Первую возможность для проявления своих талантов Резерфорд нашел в Университете Новой Зеландии, в котором он получил в 1893 году степень бакалавра. «Электрические волны», открытые в 1887 году Генрихом Герцем, – сейчас мы называем их радиоволнами – произвели на Резерфорда, как и на других молодых людей по всему миру, сильнейшее впечатление. Для изучения этих волн он собрал в промозглом подвальном чулане так называемый вибратор Герца – электрически заряженные металлические шары, установленные с зазором, благодаря которому между металлическими пластинами проскакивают искры. Он искал задачу, которая могла бы стать темой его первого независимого исследования.