Шрифт:
Химическое модифицирование полимеров, направленное на изменение их свойств путем регулирования надмолекулярной структуры (введение зародышей кристаллизации, термическая обработка) или изменения химического состава молекулы.
Поскольку макромолекулы образуют цепи, состоящие из отдельных звеньев и простирающиеся в длину на расстояния в тысячи раз большие, чем их поперечные размеры, то макромолекулам свойственна гибкость (которая ограничена размером сегментов – жестких участков, состоящих из нескольких звеньев). Гибкость макромолекул является одной из отличительных особенностей полимеров. Если макромолекула состоит из звеньев различной природы, то материал называется сополимером. Введение в полимер звеньев другой природы позволяет получить материал с требуемыми свойствами. Например, в сополимере стирола помимо основного звена содержится каучук, благодаря чему повышается ударная вязкость материала.
Макромолекулы полимеров могут иметь линейную, разветвленную или сетчатую (сшитую) структуры, рис.2. Внутри макромолекулы между атомами во всех трех случаях действуют прочные ковалентные связи, энергия которых составляет 300…500 кДж/моль. У полимеров с линейной и разветвленной структурами между макромолекулами чаще всего действуют силы притяжения отрицательных и положительных частиц (силы Ван Дер-Ваальса), энергия которых составляет до 10 кДж/моль, т. е. в десятки раз меньше.
У полимеров с сетчатой структурой между макромолекулами действуют, главным образом, прочные ковалентные связи.
Линейные полимеры обладают специфичными свойствами, в частности, способностью к образованию анизотропных высоко ориентированных волокон и пленок, а также к большим обратимым деформациям (натуральный каучук, целлюлоза, полиэтилен низкого давления, капрон). По мере перехода от линейных полимеров к разветвленным и сшитым полимерам комплекс их специфических свойств становится все менее выраженным (крахмал, полипропилен, полиэтилен высокого давления). Трехмерные полимеры с очень большой частотой сетки (фенолформальдегидные полимеры, шерсть, резина) этими свойствами вообще не обладают.
Рис.2. Структуры полимеров: а – линейная; б – разветвленная; в – сетчатая (сшитая)
Учитывая связи состава и структуры со свойствами полимеров, их можно классифицировать по различным признакам (составу, форме макромолекул, фазовому состоянию, полярности, отношению к нагреву).
По составу полимеры подразделяют на органические, элементоорганические и неорганические.
Органические полимеры составляют наиболее обширную группу соединений. Если основная молекулярная цепь таких соединений образована только углеродными атомами, то они называются карбоцепными полимерами.
По химическому строению главной цепи различают гомоцепные и гетероцепные полимеры. Макромолекулы гомоцепных полимеров в составе главной цепи содержат одинаковые атомы (углерода, кремния, серы, фосфора и др.). В макромолекулах гетероцепных полимеров в состав главной цепи входят различные атомы.
Элементоорганические соединения содержат в составе основной цепи атомы (Si, Ti, Al), сочетающиеся с органическими радикалами (СН8, С6Н5, СН2). Эти радикалы придают материалу прочность и эластичность, а атомы (Si, Ti, Al) сообщают повышенную теплостойкость. В природе таких соединений не встречается. Представителями их являются кремний органические соединения.
К неорганическим полимерам относятся силикатная керамика, слюда, асбест. В составе этих соединений углеродный скелет отсутствует. Основу неорганических материалов составляют оксиды кремния, алюминия, магния, кальция и др. В силикатах существуют два типа связей: атомы в цепи соединены ковалентными связями (Si–О), а цепи – ионными связями. Неорганические полимеры отличаются большой плотностью и высокой длительной теплостойкостью. Однако, стекла и керамика являются хрупкими материалами и плохо переносят динамические нагрузки.
По фазовому состоянию полимеры подразделяют на аморфные и кристаллические.
Аморфные полимеры однофазны. Аморфная фаза уменьшает жесткость системы, делает ее эластичной. Это свойство используют в некоторых технологических процессах для повышения эластичности изделий, производя быстрое охлаждение (закалку) расплава полимера.
Кристаллические полимеры образуют пространственные решетки кристаллитов. Кристаллизация происходит в определенном интервале температур. В обычных условиях полной кристаллизации полимера не происходит, и структура получается двухфазной, т. е. кристаллические полимеры имеют участки молекул разрыхленной упаковки, которые составляют его аморфную фазу. В зависимости от своей природы и условий затвердевания эти полимеры могут иметь структуру с преобладающим содержанием аморфной или кристаллической фазы. Отношение объема всех кристаллических областей полимера к общему объему называется степенью кристалличности. Высокую степень кристалличности (60…80 %) имеют фторопласт, полипропилен, полиэтилен высокой плотности, поликарбонаты. Поливинилхлорид, полиэфиры, полиамиды и полиэтилен низкой плотности имеют меньшую степень кристалличности. При длительном хранении, эксплуатации и переработке полимеров их структуры могут претерпевать изменения.
В зависимости от строения звена макромолекулы термопласты разделяют на неполярные и полярные. В случае симметричного строения звена макромолекулы, полимер является неполярным, при несимметричном строении – полярным (рис. 3). При симметричном строении центры тяжести положительных и отрицательных зарядов совпадают, и молекула становится электрически нейтральной. При несимметричном строении в результате несовпадения центров тяжести положительных и отрицательных зарядов молекула обладает определенным дипольным моментом.