Шрифт:
У глубокого обучения три недостатка:
1) оно требует огромного количества данных (AlphaGo потребовалось 30 млн партий в го, чтобы достичь сверхчеловеческой производительности), а с минимальной информацией работает плохо. Чем сильнее реальное положение дел отличается от данных, использованных для обучения нейросети, тем ненадежнее будет результат;
2) оно непрозрачно. Работа с огромными массивами данных неподвластна разуму людей: мы не можем понять, почему система решила так, а не иначе. Ее работа не сводится к умопостигаемым принципам типа «если у человека повышенное количество лейкоцитов, стоит предположить инфекцию». И она не соответствует естественным знаниям о том, как устроен мир. Поэтому нейросеть способна распознать мост или прицеп, сопоставив соответствующие пиксели, но она не видит принципиальной разницы между тем и другим, о чем говорит пример про въехавший под прицеп автомобиль Tesla;
3) оно ограниченное. Нейросеть может изучить миллион изображений розовых поросят, но на миллион первом снимке не опознать поросенка черного цвета. Очевидное решение проблемы – увеличить обучающую выборку. Однако доучивание нейросети на искажения одного типа не дает гарантий от искажений другого типа, а все разнообразие физических объектов перебрать невозможно.
Два ключевых умения, овладение которыми говорило бы о том, что ИИ уподобился человеческому разуму, – чтение и способность роботов заменить человека в разных сферах жизни. Как обстоят дела здесь?
Количество информации ежедневно увеличивается в разы, даже узкие специалисты не успевают знакомиться со всеми новостями в своей сфере. Было бы здорово, если бы ИИ пришел здесь на помощь. Кажется, он уже готов: в 2018 году Рэй Курцвейл [2] анонсировал проект Google Talk to Books. По словам Курцвейла, GTB должен «превратить чтение книг в принципиально иной процесс». Так и оказалось, только слова «принципиально иной» значили не то, что подразумевал футуролог. Собранная в электронной памяти книжная коллекция не помогла GTB поумнеть. На вопрос, где Гарри Поттер познакомился с Гермионой Грейнджер, система дала лишь шесть из 20 ответов, касавшихся Гарри Поттера, – в остальных упоминались какие-то другие Гарри. С вопросом о том, кто был главным судьей Верховного суда США в 1980-м, GTB тоже не справился (при этом ответ легко отыскивается любой поисковой системой). Оказалось к тому же, что ответы системы очень зависят от формулировки вопроса. Если спросить GTB, кто предал своего учителя за 30 сребреников, только три ответа из 20 укажут на Иуду. А если спросить, кто предал своего учителя за 30 монет, GTB вспомнит про Иуду лишь в одном из 20 случаев. Отвечая на вопрос «Кто продал своего учителя за 30 монет?», GTB вообще не упоминает про Иуду.
2
Читайте саммари книги футуролога и специалиста по долголетию Рэя Курцвейла «Transcend. Девять шагов на пути к вечной жизни».
Конец ознакомительного фрагмента.