Шрифт:
К другой классификации системы искусственного интеллекта относятся «узкий ИИ» и «Общий AI». «Общий AI» – это система, которая использует один и тот же алгоритм для решения большого класса задач. Система «обобщенного ИИ» может быть изучена и адаптирована для решения новых задач без вмешательства человека. Система «узкий AI» использует определенный алгоритм для решения конкретных задач, таких как игра в шахматы, создание карт и т. д.
Таблица 2-1 представляет собой обзор состояния системы искусственного интеллекта. И может служить жизнеспособным определением.
Таблица 2-1
Интеллектуальные вычислительные системы напрямую связаны с большими данными. Любые данные имеют критерии, по которым они генерируются. В основе данных лежит знание.
Основная компетенция универсальной системы искусственного интеллекта заключается в извлечении знаний из данных с помощью алгоритмов и вычислительных систем. После того, как мы получим знания, мы можем сделать множество вещей. Мы можем предсказывать явления и события, можем решить проблему автоматизации, можем решить любую проблему, которая нуждается в решении. Знание говорит нам, чего хотят люди, чего требует общество. Со знанием мы можем найти ответ. Таким образом, первый уровень развития искусственного интеллекта – общий искусственный интеллект.
Прорыв в глубоком обучении, достигнутый в последние годы, касается уровня восприятия. В частности, распознавания изображений и речи, а также понимания естественного языка. Но это только начало. Следующее, что нужно сделать, это добавить познавательную функцию. Система должна научиться познавать окружающий мир через свет, вибрацию звука или язык общения и символы. [5] Самое главное – понять, что это значит. Система видит перед собой картину и может определить, какие объекты или люди в ней находятся и что делают.
5
За последние несколько лет нейросети научились понимать, что за объекты находятся на фотографии и как они взаимойдействуют друг с другом. Например, чашка стоит на столе, а ложка находится внутри чашки. В экспериментальных сетях достигнут и обратный эффект: по текстовому описанию нейросеть способна воссоздать изображение, например женщину, едущую на лошади по лугу. – Прим. науч. ред.
В настоящее время почти все компании, которые занимаются разработкой ИИ, могут быть размещены в четырех квадрантах. Большинство компаний создают «узкий AI», который решает только одну проблему или несколько относительно узких: играть в карты или открыть автомобиль. «Общий ИИ» использует одну и ту же систему, для решения всех проблем. И это уже похоже на человеческий интеллект. «Общий ИИ» – это долгосрочная цель развития искусственного интеллекта, достижение которой займет не менее двадцати-тридцати лет. Baidu, Google, Microsoft, Facebook и другие компании работают в направлении «общего AI». И они способны судить, может ли человек с помощью искусственного интеллекта знать больше, делать больше, испытывать больше. Например, компания Baidu, опираясь на данные поисковых систем, провела большое количество технических исследований, прежде чем создать практически невозможное – продукт, который опирается на мнения людей. Мы нашли множество беспрецедентных знаний и сделали множество выводов. Благодаря этому сейчас люди знают больше. Но мы не остановились и продолжаем двигаться вперед, чтобы добиться более невозможного. Беспилотные технологии управления, технологии взаимодействия на естественном языке, сенсорные методы движения постоянно совершенствуются. Сейчас люди используют глаза, чтобы видеть, и уши, чтобы слышать. Но, возможно, в будущем нам не понадобятся ни глаза, ни уши, потому что у нас появится более совершенный способ восприятия реальности.
Таким образом, все компании в сфере ИИ можно оценить по нескольким вопросам: Какой из четырех квадрантов занимает компания? Есть ли у нее силы и средства, чтобы люди с машинами знали больше, делали больше, испытывали больше?
В США и Китае существует множество компаний, которые утверждают, что они занимаются развитием искусственного интеллекта. Некоторые из них говорят, что ИИ – это облачные вычисления. Другие, что ИИ – это большие данные. Но это лишь часть системы искусственного интеллекта. Сила искусственного интеллекта – это массивы данных, облачные вычисления, алгоритмы, время обучения и общая мощность, а также программное и аппаратное обеспечение.
Такую силу невозможно собрать в одночасье. И не имеет смысла обобщать. На Земле нет одной дороги. Есть разные пути. Есть разные сайты, люди, бизнесы. Кто-то из них только начал движение, а кто-то оставил за спиной уже внушительную часть пути.
Baidu Brain можно рассматривать как типичную силу искусственного интеллекта. Его способность к разделению может подчеркнуть нашу состоятельность в индустрии искусственного интеллекта. Если у компании, специализирующейся на продуктах с ИИ, нет возможностей в будущем, можно сказать, что она не готова войти в эту сферу.
Baidu Brain – это сочетание аппаратной базы, базы данных и алгоритмических возможностей, облачных вычислений, больших данных и искусственного интеллекта. Это сочетание является основой стратегии Baidu. Облачные вычисления – это инфраструктура. Массивы данных – это топливо. Искусственный интеллект – это двигатель, объединяющий «физику интернета», интернет-технологии и бизнес-модели цифрового мира. Он входит в общество, чтобы полностью его изменить.
Облачные вычисления, имя в облаке – это нижняя составляющая мозга Baidu, физическая его часть IaaS (Infrastructure as a Service, инфраструктурные услуги).
Супервычислительная мощность Baidu Brain достигается за счет высокопроизводительного вычислительного оборудования. Оно составляет сотни тысяч серверов и использует передовые кластерные операционные системы для унифицированного управления суперкомпьютерами ИИ.
Для того, чтобы расширить возможности обучения, Baidu самостоятельно разработал GPU и FPGA (Программируемая пользователем вентильная матрица) гетерогенный вычислительный сервер. Он был увеличен до 64 GPU / FPGA и превосходит традиционную плотность сервера в 16 раз. Один сервер теперь может завершить обучение 100 миллиардов моделей данных. В основе Baidu FPGA находится процессор, обеспечивающий 10 Tops [6] вычислительной производительности. Он превосходит основной 20-ядерный сервер по вычислительной эффективности в 60 раз.
6
Триллион операций в секунду – Прим. науч. ред.