Вход/Регистрация
Ключевые идеи книги: Как учится машина. Революция в области нейронных сетей и глубокого обучения. Ян Лекун
вернуться

Smart Reading

Шрифт:
Глубокие сети

Чтобы приблизить деятельность ИИ к работе мозга, недостаточно было воссоздать его строение. Нужно было сделать системы способными к обучению по аналогии с механизмами обучения человеческого мозга. Так возникло направление глубокого обучения (deep learning) и искусственных нейронных сетей. На механизмах глубокого обучения и нейронных сетей работают современные компьютерные системы, включая автономные автомобили. Столкнувшись с ограничениями перцептрона, исследователи стали накладывать несколько слоев нейронов друг на друга, чтобы машины могли решать более сложные задачи. Принцип обучения остался прежним: параметры сети настраиваются таким образом, чтобы система допускала минимум ошибок. Сквозное обучение многослойных сетей – это так называемое глубокое обучение, или обучение преобразованию входных данных в осмысленные представления.

В простейших многослойных сетях все нейроны одного слоя связаны со всеми нейронами следующего слоя. В многослойной сети первичные слои выступают в роли экстракторов признаков, которые создаются не вручную, а автоматически – в процессе обучения. Функциональность многослойных нейросетей лучше всего иллюстрируют примеры, связанные с распознаванием изображений.

Проанализируем примеры различного написания букв C и D с помощью двухслойной сети, чтобы показать, как единицы первичного слоя могут обнаруживать шаблоны, характерные для C и D. Перцептрон при решении подобной задачи ошибался, если варианты написания C и D слишком сильно различались по форме, положению или размеру. Однако если добавить еще один слой нейронов, проблема будет решена. Нейроны первичного слоя будут находить паттерны, характерные для C и D. Такие детекторы создаются автоматически, потому что в сети используется обратное распространение, которое автоматически обнаруживает отличительные особенности или шаблоны. Например, непрерывная линия с двумя открытыми концами характерна только для C. Наличие линий, образующих близкий к прямому угол, указывает на D и т. д. Первый слой ведет себя как экстрактор признаков, а второй – как классификатор, но все уровни сети обучаются одновременно.

Конец ознакомительного фрагмента.

  • 1
  • 2

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: