Шрифт:
PC1 PC2 PC3
0.5433274 0.7842191 0.9269781
К сожалению, не существует строгих правил, руководствуясь которыми можно определить, сколько компонентов должно быть включено в PCA, – это зависит от данных и от уровня шума. Зачастую просто по приведённой выше диаграмме делают вывод о том, что увеличение количества главных компонент в модели не способствует резкому увеличению оставшейся доли объяснённой дисперсии.
С другой стороны, всегда можно посмотреть на переменные коэффициенты в каждом компоненте с векторами нагрузки. Весы нагрузки представлены по убыванию абсолютной величины снизу вверх. Абсолютное значение указывает на важность каждой переменной для определения каждого главной компоненты и представлено длиной каждого прямоугольника:
plotLoadings(My_result.pca)
Можно открыть справку командой ?plotLoadings, чтобы ознакомиться с полным списком аргументов. Следующий пример покажет только две темы, оказавших наибольше влияние на разделение, с указанием их названий и увеличением шрифта на 10%:
plotLoadings(My_result.pca, ndisplay = 2,
name.var = c('первая тема','вторая тема','третья тема','четвертая тема','пятая тема'),
size.name = rel(1.1))
Такое представление будет особенно информативным в случае, когда необходимо выбирать из нескольких переменных. Диаграммы и графики можно отображать интерактивно в 3D, используя стилевую опцию style="3d". Для этого используется пакет rgl, устанавливаемый и подключаемый предварительно:
Конец ознакомительного фрагмента.