Шрифт:
В связи с формализацией описания приведенных выше типов явлений, обладающих особым характером, возникла математическая теория хаоса, представляющая собой аппарат, описывающий поведение ряда нелинейных динамических систем, при определенных условиях подверженных явлению, известному как хаос (динамический хаос, детерминированный хаос). Поведение такой системы может казаться случайным, хотя модель, описывающая систему, вполне детерминирует ее поведение. В качестве примеров подобных нелинейных динамических систем можно привести такие системы, как биологические популяции, атмосфера, некоторые типы сердечных аритмий и др.
Немецкий ученый Г. Хакен назвал теорию самоорганизации синергетикой [5] (теория совместного действия) (Хакен, 2003) [6] . Синергетика (от гр.
– приставка со значением совместности, – «действие, деятельность»), изучает такие взаимодействия элементов системы, которые приводят к возникновению пространственных, временных или пространственно-временных структур в макроскопических масштабах. Данное возникновение происходит в точке бифуркации [7] – моменте смены установившегося режима работы системы. Особое внимание уделяется структурам, возникающим в процессе самоорганизации. На практике синергетика представляет собой междисциплинарное направление в исследовании сложных систем, состоящих из многих подсистем различной природы. Такими подсистемами могут быть множества электронов, атомов, молекул, клеток, нейронов, механических элементов, органов животных, людей, транспортных средств и т. д.
5
Термин «синергетика» впервые был использован в XIX в. английским физиологом Шеррингтоном при анализе управления мышечными системами со стороны спинного мозга. В 70-х гг. XX в. немецкий физик Герман Хакен стал называть синергетикой новую научную дисциплину, в которой изучается совместное действие многих подсистем с целью исследования возможности управления большими системами на междисциплинарном уровне – в обществе, технике, природных системах. В настоящее время такое расширительное толкование применимости методов синергетики подвергается критике, хотя имеет и ряд сторонников. Отношение научного сообщества к синергетике неоднозначно: ряд ученых воспринимают ее как универсальный инструмент познания, другие видят в ней чисто теоретическое построение, имеющее неопределенные основания при отсутствии достаточных доказательств.
6
Идея синергетики (еще без использования этого термина) фактически использовалась в отечественных теоретических и экспериментальных исследованиях М. Н. Ливанова, П. К. Анохина, А. Н. Лебедева, Г. И. Шульгиной и их сотрудников при изучении биоэлектрической активности мозга. Ими показано, что при обучении, то есть в процессе восприятия, обработки, фиксации и взаимодействия образов внешнего мира и выработки ответных действий повышается степень синхронности суммарных медленных колебаний потенциалов и активности нервных клеток в структурах головного мозга. В основе обучения лежит синхронная конвергенция потоков импульсации нейронов (Ливанов, 1972; и др.).
7
Термин синергетического подхода. Изначально использовался в области неравновесной термодинамики.
Из самого замысла синергетики, как широкого междисциплинарного направления научных исследований, предполагается и возможность ее применения к наукам о человеке и обществе, в гуманитарной сфере. В одной из своих книг Пригожин отметил: «Для большинства основателей классической науки (и даже для Эйнштейна) наука была попыткой выйти за рамки мира наблюдаемого, достичь вневременного мира высшей рациональности – мира Спинозы. Но, может, существует более тонкая форма реальности, охватывающая законы и игры, время и вечность» (Пригожин, 1985, с. 216). Речь идет о том, что помимо рациональности, обеспечивающей порядок в сознании, в объяснении мира как-то должен быть учтен и хаос, неопределенность, которую современная наука, похоже, уже никак не может сбрасывать со счетов.
На наш взгляд, пафос классической работы Пригожина и Стенгерс «Порядок из хаоса» можно в целом выразить их же словами: «Старое априорное различие между научными и этическими ценностями более неприемлемо. Оно соответствовало тем временам, когда внешний мир и наш внутренний мир находились в конфликте, были почти „ортогональны“ друг другу. Ныне мы знаем, что время – это некоторая конструкция и, следовательно, она несет некоторую ответственность» (Пригожин, Стенгерс, 2005, с. 260). Приведенные выше высказывания подчеркивают то, что мы стоим перед свершившимся фактом: наука в целом теперь уже является «нравственной силой» (А. С. Панарин). Естествознание вторгается в ту с трудом поддающуюся описанию область непредсказуемого, которая традиционно являлась предметом исключительно гуманитарного познания.
В естественно-научных исследованиях как хаос (детерминированный хаос, динамический хаос), так и порядок понимаются в качестве формализованных характеристик пространственных и временных отношений и взаимодействий элементов систем. Несмотря на то что характер взаимодействий в различных системах зависит от субстрата составляющих конкретные системы элементов, возникновение порядка из хаоса, то есть образование новой структуры, здесь рассматривается в качестве общего закона. С данных позиций системы с хаотическим поведением, как ни парадоксально это звучит, являются детерминированными. Такое использование понятия «хаос» отличается от его значения, используемого в мифологии и философии, и определяется обычно в узком смысле как бесформенная, неупорядоченная совокупность материи и пространства, в противоположность порядку.
Соотношение хаоса и порядка можно проиллюстрировать на примере законов термодинамики. Второе начало термодинамики в формулировке немецкого физика Р. Клаузиуса констатирует, что теплота не переходит самопроизвольно от холодного тела к более горячему. Первое начало термодинамики, то есть закон сохранения и превращения энергии, не запрещает перехода теплоты от холодного тела к горячему, но при условии, что количество энергии в данной замкнутой системе останется прежним. Однако такой переход в реальности никогда не происходит.
Указанные процессы перехода теплоты характеризуются энтропией, определяемой как мера неупорядоченности системы. Используя данное понятие, второе начало термодинамики можно сформулировать так: при самопроизвольных процессах в системах, имеющих постоянную энергию, энтропия всегда возрастает. Физический смысл возрастания энтропии сводится к тому, что состоящая из некоторого множества частиц изолированная система стремится перейти в состояние с наименьшей упорядоченностью движения частиц, другими словами в состояние термодинамического равновесия, в котором движение частиц хаотично. При этом абсолютное термодинамическое равновесие и понимается как состояние с максимальной энтропией системы, то есть хаос.
Суть теории изменений Пригожина заключается в том, что при определенных условиях энтропия может обусловливать возникновение порядка, упорядоченного состояния системы.
Таким образом, в естественно-научных исследованиях формулировка «соотношение хаоса и порядка» описывается математическими моделями и является максимально формализованной. Роль субстрата, то есть специфики элементов исследуемых систем, здесь практически не учитывается, изначально формализуется и является второстепенной. По существу, если мы будем говорить о соотношении неупорядоченности и порядка, то смысл данной формулировки не изменится, она будет лишь менее интригующей.