Шрифт:
Следующий метод термического обезвреживания промышленных отходов – пиролиз. Схема работы пиролизной установки представлена на рис.3.4.
Рис.3.4. Схема работы пиролизной установки
Существует два различных процесса пиролиза промышленных отходов: окислительный и сухой пиролиз.
Окислительный пиролиз является процессом термического распада отходов промышленности, при котором они частично сжигаются или непосредственно контактируют с продуктами сгорания топлива. Этот способ термического обезвреживания применяется для многих отходов, «неудобных» для сжигания или газификации. Это отходы вязкого или пастообразного состояния, влажные осадки, пластмассы, шламы с большим количеством золы, земля с большим количеством примеси мазута, масла и других соединений, отходы, которые сильно пылят.
Сухой пиролиз представляет собой также процесс термического разложения отходов, но без доступа кислорода. Вследствие данного процесса образуется пиролизный газ, имеющий высокую теплоту сгорания, продукт в жидком виде и углеродистый остаток в твердом состоянии. Данный способ термической обработки отходов высокоэффективно обезвреживает их и позволяет применять как топливо и химическое сырьё. Это способствует развитию малоотходных и безотходных технологий, рациональному применению природных ресурсов.
Способ обработки отходов методом сухого пиролиза приобретает все большее распространение. Сегодня это чуть ли не самый перспективный способ утилизации твердых отходов органического содержания, для которого характерно выделение ценных компонентов из данных отходов.
Различают низкотемпературный (450-550°С), среднетемпературный (макс. 800°С) и высокотемпературный пиролиз (900°С- 1050°С) в зависимости от температуры, при которой протекает процесс.
Процесс пиролиза отходов осуществляется в реакторах, имеющих внешний и внутренний обогрев. Внешний тип обогрева применяют в реакторах, имеющих исполнение в виде вертикальных реторт, или в барабанных реакторах вращающегося типа. В реакторах пиролизные газы не разбавляются теплоносителями, сохраняя за счет этого высокую характеристику теплоты сгорания. Газ, получаемый в реакторе с внешним типом обогрева, содержит минимум пыли, ибо он не перемешивается с газовым теплоносителем, что является положительным моментом данного оборудования. Обычно теплоноситель пропускается через слой отходов с содержанием мелкодисперсных частиц.
Разрушение органических компонент высокотоксичных отходов, достигаемое вместо окисления электрическим пиролизом, заложено, в частности, в конструкцию усовершенствованного электрического реактора фирмы «Хубер» (США). Реактор представляет собой вертикальную электрическую камеру из пористого графита, вокруг которой установлены стержневые электронагреватели, а вся система термоизолирована. Энергия излучается электрически нагретыми угольными электродами и передается на обрабатываемые отходы через пористый каркас реактора. Для предотвращения контакта обрабатываемых отходов со стенками реактора в него через поры графита непрерывно подается инертный газ (азот). Температура в зоне термообработки поддерживается на уровне 2200-2500°С, время обработки – миллисекунды. Отходы из первой камеры направляются в две последовательно размещенные камеры дожигания (температуры 1370 и 540°С соответственно), после чего твердые отходы поступают в контейнер, а газы – на дополнительную очистку в циклоне и в адсорбере с активированным углем. Разработаны стационарный и подвижный варианты установки производительностью 20-50 тыс. т в год по ПХБ-содержащим отходам. ПХБ -полихлорированные бифенилы–класс химических ароматических соединений, содержащих в молекуле от одного до десяти атомов хлора. Основные продукты, образующиеся при обработке почв, зараженных диоксинами, – водород, хлор и HCl. В установке могут обрабатываться только материалы, однородные по фазе (не шламы). Эффективность обеззараживания от: ПХБ – 99,9999%; диоксинов —>99,999%.
Следующее направление, основанное на применении низкотемпературной плазмы, используется при утилизации опасных отходов. Плазмотермическая технология предназначена для обезвреживания твердых промышленных и бытовых отходов любой степени опасности.
Принцип работы плазмотрона и его конструкция довольно просты и состоят в следующем: сам процесс с применяемой технологией происходит в камере с двумя электродами: катодом и анодом. Они, как правило, изготавливаются из меди, иногда бывают полые. При определенном давлении в камеру загружаются отходы, кислород и топливо в заранее установленных объёмах. Добавляют водяной пар. Можно применять катализаторы. Давление и температура в камере постоянные. Общий принцип плазменной обработки отходов заключается в термическом разложении с неполным окислением под воздействием водяного пара, кислорода воздуха и давления. Чтобы исходное сырье не сгорало, нужно контролировать поступление окислителя – воздуха. На выходе из установки образуется смесь водорода, монооксида углерода с примесями других горючих газов. Получаемый синтез газ служит топливом для электростанций, сырьем для получения метанола и высших спиртов, аммиака, азотных удобрений, синтетического моторного масла и горючего, рис.3.5.
Рис.3.5. Продукты плазменной переработки отходов
Плазменная переработка отходов с электродуговым плазмотроном представлена на рис. 3.6.
Рис.3.6. Схема с электродуговым плазмотроном
Твердые бытовые отходы при этой технологии обрабатываются потоком плазмы с температурой 1200oС и выше. При такой температуре смолы не образуются, а токсичные отходы разрушаются.
Перед началом плазменной переработки бытовые отходы предварительно готовятся и измельчаются, после чего загружаются в приемный бункер. Оттуда сырье посредством шнекового загрузочного устройства поступает в непосредственно в реактор. Там отходы движутся сверху вниз, поочередно проходя этапы сушки и пиролиза. Необходимая температура протекания процесса поддерживается за счет работы плазмотрона, который получает питание от электрической сети. Энергия электрической дуги плазмотрона превращает газ в плазму с высокой теплопроводностью и теплоемкостью. Проходя через плазму, органические соединения распадаются на углекислый газ, водяной пар, азот, водород, моноксид углерода и водяной пар. Образовавшаяся газовая смесь поступает в верхнюю часть реактора, где отдает свое тепло твердым отходам. За счет этого и происходит их термодеструкция. Для накапливания шлака предназначена нижняя часть реактора. Обычно там он находится в виде расплава и должен периодически удаляться специальным устройством.
Обезвреживание отходов плазменным методом может выполняться двумя путями:
–посредством ликвидации особо опасных высокой токсичности отходов плазмохимическим методом;
–переработка отходов плазмохимическим методом, чтобы получить товарный продукт.
Разложения в плазмотроне вредных продуктов (полихлорбифенилов, метил бромидов, фенилртутьацетатов, хлор-и фторсодержащих пестицидов, поли ароматических красителей) происходит почти полностью. В результате разложения образовываются CO2, H2O, HC1, HF, P4O10 по следующим технологиям:
–конверсия отходов в воздушной среде,
–конверсия отходов в водной среде,
–конверсия отходов в паровоздушной среде,
–пиролиз отходов при малых концентрациях.
В зависимости от способа переработки отходов можно оптимизировать работу плазмотрона для отходов с разным химическим составом. При использовании плазменного метода для переработки отходов в восстановительной среде получают ценную товарную продукцию:
–из жидких органических хлорсодержащих отходов получают ацетилен, этилен, HC1 и продукты на их основе;