Шрифт:
Рис. 2. Оптимальная последовательность сгустков в кольце
Четыре встречные пары можно организовать двумя способами. Первый вариант: один сгусток в одну сторону, а четыре – в другую; всего пять сгустков. Второй вариант: в обе стороны летят по два сгустка – всего четыре. Значит, второй вариант более оптимальный.
Осталось подобрать взаимное расположение сгустков так, чтобы все четыре попарных комбинации встречались в указанных местах. Пример такого расположения показан на рис. 2. Это и есть решение задачи.
У решения есть одна неожиданная особенность: оно менее симметрично, чем постановка задачи. Никакого глубокого вывода отсюда не следует, но, как показывает опыт, бывает так, что эта несимметричность становится препятствием при поиске ответа: мозг подсознательно ожидает, что решение будет столь же симметричным, как и условие.
Любопытно, что и в реальности, на самых первых этапах запуска и отладки БАК применялась примерно такая схема. В настоящем кольце этого коллайдера столкновения происходят не в восьми, а в четырех точках (с номерами 1, 2, 5, 8), вокруг которых построены крупные детекторы ATLAS, ALICE, CMS и LHCb. Но расположены они все равно в вершинах правильного восьмиугольника. Благодаря этому при запуске коллайдера можно было проверить работоспособность всех детекторов с минимальным количеством сгустков в пучках. А уже затем, когда техники убедились в стабильности пучков и надежности аппаратуры, они начали планомерно повышать интенсивность. В пике интенсивности в каждом пучке циркулируют более 2000 сгустков. Они следуют друг за другом с интервалом 25 наносекунд, то есть на расстоянии примерно восемь метров друг от друга, и заполняют практически все кольцо. Но подчеркнем, что даже при такой плотной загрузке столкновения происходят только в тех четырех местах, где две вакуумные трубы пересекаются.
Дополнительная информация
Подробную информацию на русском языке об устройстве и научных задачах Большого адронного коллайдера, а также связанную с ним ленту новостей можно найти в специальном проекте на сайте «Элементы»: elementy.ru/LHC.
БАК – крупнейший, но далеко не единственный научный проект ЦЕРНа, Европейской организации ядерных исследований. О других научных исследованиях, технических разработках и образовательных мероприятиях ЦЕРНа можно узнать на его сайте: home.cern.
2. Хоккейная задача
В прошлой задаче мы сразу нырнули в самую современную физику. А теперь давайте вынырнем и обратимся к повседневной жизни, поговорим о спорте. Спорт – это движение, а значит, в нем тоже можно углядеть интересные и подчас неожиданные физические явления. Возьмем, например, хоккей. При кистевом броске хоккеисты часто закручивают шайбу, так что она одновременно скользит по льду и вращается. Если движение шайбы не ограничивать размерами хоккейной коробки, то рано или поздно и вращение, и скольжение остановятся из-за трения о лед. Но что прекратится раньше?
Этот вопрос может удивить: неужели тут есть какие-то общие закономерности?! Да, есть, и мы сейчас их разберем.
Рассмотрим слегка упрощенную задачу. Пусть вместо шайбы у нас будет однородное узкое и плоское кольцо. Его запускают скользить по горизонтальной поверхности, придав некоторую начальную скорость и некоторое вращение (рис. 1). Между кольцом и поверхностью действует обычное сухое трение: сила трения пропорциональна прижимающей силе, не зависит от модуля скорости проскальзывания и направлена в противоположную от скорости сторону.
Рис. 1. Вращающееся тонкое кольцо скользит по горизонтальной поверхности (вид сверху)
Выясните, что остановится раньше – скольжение или вращение кольца.
Подсказка
Задача может показаться неприступной из-за того, что в условии практически ничего не задано. Нет ни размеров колечка, ни начальных скоростей скольжения и вращения, ни коэффициента трения. На самом деле, когда задача формулируется таким образом, это обычно служит намеком на то, что ответ не будет зависеть от конкретных параметров. Поэтому при решении вы сами можете взять какие-то значения для этих величин, но должны проследить, что они действительно исчезнут из ответа.
Кольцо участвует сразу в двух движениях: скользит и вращается. Из-за векторного сложения поступательного и вращательного движения разные части кольца движутся относительно поверхности в разные стороны (нарисуйте колечко, представьте, как оно движется, и убедитесь, что разные участки действительно в данный момент скользят по поверхности в разных направлениях). Поэтому выберите вначале какой-то маленький участок на кольце и сосчитайте силу трения, действующую именно на это место. Подумайте, как влияет эта сила на вращательное и поступательное движение, и попытайтесь усреднить эти два влияния по всему кольцу.
После этого проанализируйте формулы для трех случаев: когда скорости вращения и движения совпадают, а также когда скорость вращения очень мала или, наоборот, очень велика по сравнению с поступательным движением. Это наведет вас на мысль, как ответить на вопрос задачи.
Рассмотрим участок кольца, который находится под углом к направлению движения (рис. 2). Пусть в данный момент времени скорость центра масс кольца равна v, а скорость вращения обода u = R, где – угловая скорость вращения в данный момент, а R – радиус кольца. Этот кусочек кольца участвует в поступательном и вращательном движении. Его скорость относительно поверхности показана на рисунке серой стрелкой. Она составляет угол с направлением поступательного движения, причем
Рис. 2. Скорости и силы на маленьком участке кольца
Эти выражения выглядят громоздкими, но они получаются из обычных формул сложения двух векторов скоростей.
Сила трения, действующая на этот участок, по модулю равна F = mg (здесь m – масса участка кольца) и направлена в противоположную от скорости сторону. У этой силы есть проекция на направление поступательного движения, – F cos , и проекция на касательную к кольцу, которая притормаживает вращение, – F sin ( – ). Не стесняясь, подставим сюда выражения для синуса и косинуса угла , а также учтем, что sin ( – ) = sin cos – cos sin :