Шрифт:
В процессе моего повествования очень важен плотный контроль над всеми входящими нюансами – поэтому буду пунктуальным. Итак, пора познакомиться с доской…
Подглава 1. Доска
Первые данные о шахматах датируются вторым веком нашей эры. Индия, Месопотамия, затем Арабский Восток, затем, по известным источникам, через арабские завоевания Сицилия, Испания. Далее военный характер игры понравился европейцам, и через обязательное обучение в дворянской среде шахматы стали известны всей Европе. К нам в Россию (Русь) первые шахматы попали, скорее всего, по известному торговому пути из Скандинавии (из варяг) в Персию (в греки), по крайней мере, новгородские раскопки датируют шахматы восьмым веком нашей эры. С той поры шахматы практически не изменились. Единственное крупное изменение коснулось королевы или ферзя (королевский указ Изабеллы испанской). И всегда была шахматная доска.
Диаграмма 1
Геометрия шахматной доски парадоксальна. Осуществляются принципы не евклидовой геометрии.
В средней школе изучается так называемая евклидовая геометрия. Одна из основных аксиом (утверждений, не подлежащих ревизии, пересмотру) которой, следующая: кратчайшим расстоянием между двумя точками – является одна прямая линия. На шахматной доске таких прямых может быть несколько (от одной до 357 – движение от поля е1 до поля е8). Движение фигур может и осуществляется как по традиционным прямым, так и по ломаным линиям. Общее расстояние при этом не меняется.
Диаграмма 2
Эта позиция на доске возникла на доске после ходов:
1) d3 – d6; 2)e3 – e6; 3) b3 – b6; 4) g3 – g6; 5) c3 – c6; 4) f3 – f6; 5) c4 – c5; 6) f4 – f5; 7) Kc3 – Kc6; 8) Kf3 – Kf6; 9); Лb1 – Лb8; 10) Лg1 – Лg8.
Она носит название «табия “Альмуджаннах”». Мы видим магический квадрат, где сумма чисел каждой строки каждого столбца, а также двух главных диагоналей равна 260. Этот же рисунок, только без фигур, будет предметом дальнейшей работы. Итак.
Что видимо – принцип построения квадрата есть, и его построение таково: в углах доски правый нижний и левый верхний – соответственно, начало и конец нумерации полей цифры 1 и 64 = 65, левый нижний и правый верхний 8 и 57 = 65. Записывая углы, соседние цифры записываем по ходу ряда, соответственно, 63, 58, 2, 7. Верхний ряд – промежуток между углами 3, 4, 5, 6. Нижний ряд – промежуток между углами 59, 60, 61, 62. Второй нижний ряд – к первому ряду прибавляем или отнимаем 8 (только без отрицательных значений и суммы цифр больше 65). Седьмой ряд – отнимаем или прибавляем цифру 8 (только без отрицательных значений и сумму цифр больше 65). Внутренние четыре ряда заполняем, отталкиваясь от поля h7–49, h3–48, g3–47, a3–41, b3–42, и поднимаясь выше – (минус) 8. Внутренний квадрат 4 на 4 с поля f3–19 по строчке 20, 21, 22 и +(плюс) 8 на каждое поле вверх. Вывод: поля равнозначные следующие (по парам):
h1 – a8, g1 – b8, a1 – h8, b1 – g8, c8 – f1, d8 – e1, e8 – d1, f8 – c1, h2 – a7, g2 – b7, f2 – c7, e2 – d7, d2 – e7, c2 – f7, b2 – g7, a2 – h7, h3 – a6, b6 – g3, c6 – f3, c3 – f6, d3 – e6, e3 – d6, b3 – g6, a3 – h6, a4 – h5, b4 – g5, c4 – f5, d4 – e5, e4 – d5, f4 – c5, g4 – b5, h4 – a5.
Вывод: если фигура (пешка) находится на равнозначном поле, проиграть оппоненту она не должна.
1. Какому полю соответствует поле с4?
2. Какому полю соответствует поле f5?
3. Какому полю соответствует поле h6?
4. Какому полю соответствует поле е4?
5. На доске стоят две одинаковые фигуры. Белый король на поле g2 и черный король на поле b7. Конгруэнтна ли (одинаково расположена) эта пара фигур? Найдите другое (симметричное поле) для черного короля.
6. Король белых стоит на поле e3. Где должен стоять король черных, чтобы не проиграть партию (сделать ничью)? Найдите еще один вариант решения шестого вопроса.
7. На доске находятся 6 пешек: белые – h2, g2, f2; черные – a7, b7, c7. Они никогда не встретятся и не пересекутся в качестве пешек. Первый ход одной из белых пешек. Как вы считаете, кто победит?
8. Расстояние от поля e1 до поля e8–7 полей (8–1 =7). Придумайте ломаную линию, длина которой будет равна 7 полям, или несколько таких линий.
Глава 2. Доска и бесконечность событий, теория возникновения жизни
В первой главе мы познакомились с волшебным квадратом: пары соответствия полей мы должны выучить наизусть, они нам всегда пригодятся. Есть теории, что шахматы (точнее, доска, произошли от древнейших математических таблиц, связанных с вычислениями. Реальные свидетельства у нас имеются: шахматная доска или ее полный аналог (большее число полей) использовалась в древности в строительстве египетских пирамид, а южноамериканские пирамиды выглядят с космоса как точная калька шахматной доски. В другой ипостаси: военный симулякр (создание плана (-ов) реальных военных сражений) – это Индия. Игра (шахматы) – называлась чатуранга, в дословном переводе «сражение четырех родов войск» (пехота, конница, боевые слоны, осадные (боевые) башни). Учитывая реальную эффективность использования чатуранги как боевого тренажера, игра стала расти главным образом через персидские, позже арабские, завоевания. Самоназвание игра получила в Персии (версий несколько), в дословном переводе: король (шах) умер (мат), буква «ы» – русский довесок. Одному из царей игра так понравилась, что он решил наградить человека (версий рассказа несколько), который его с ней познакомил. Награду предложено было выбрать награждаемому. Тот скромно попросил засыпать доску пшеницей в размере 2 в 64-й степени (первый известный пример упоминания геометрической прогрессии). Почему скромно? Чтобы вырастить такое количество пшеницы, ее надо сажать, выращивать, собирать (и не съесть ни зернышка) на всей планете Земля в течение приблизительно 300 лет. С практической (человеческой) точки зрения – эту величину уже можно принимать за бесконечность, но как бы бесконечен ни был ареал обитания (шахматная доска), он только среда. Для кого? Очевиден ответ: в первую очередь, для подобия (копии) человека.