Шрифт:
Греки и троянцы. Лагранж умер за 144 года до запуска первого искусственного спутника Земли, и не исключено, что он рассматривал пять специальных точек в системе двух тел как (всего лишь) математическое упражнение. Но нам, забравшимся на плечи гигантов, теперь видно, что интересная математика, возникающая при описании какой-либо реальной физической системы, – это почти гарантия обнаружения физического эффекта, в котором математическая достопримечательность тем или иным способом себя проявляет. И действительно, спустя более столетия после рассуждений Лагранжа астрономы начали открывать троянцев!
Если для замышляющих что-то зеленых человечков точки Лагранжа – это хорошие места для парковки, то для космических обломков и мусора точки L4 и L5 оказываются тихими закутками, где они оседают. В этих точках Лагранжа собираются астероиды, потому что там иная картина с устойчивостью, чем в трех других точках Лагранжа. С первого взгляда, правда, ситуация даже хуже, потому что баланс сил притяжения таков, что при выходе из точки Лагранжа в любом направлении возникает сила, которая побуждает уходить дальше. Но это только если смотреть на то, как работают силы притяжения. Кроме притяжения, в дело вступает движение. Сама точка Лагранжа движется по окружности, а в этом случае есть вот какая новость: при движении относительно вращающейся системы тело испытывает действие дополнительной силы [35] . Это не совсем обычная сила, потому что у нее нет физического источника, она ощущается только во вращающейся системе и связана с довольно простым обстоятельством: если вы уже стоите на вращающейся карусели-платформе, то, значит, вы приобрели ту же скорость, что и пол у вас под ногами. Но разные участки пола движутся с разными скоростями! Те, которые близко к центру, движутся медленно, а те, что у края, – быстро или очень быстро. Когда вы начнете двигаться – скажем, захотите перейти от края карусели к центру, – вы обнаружите, что, делая каждый следующий шаг, вы ставите ногу на участок пола, движущийся медленнее, чем тот, где вы только что находились. В вашем восприятии это будет выражаться в некоторой силе, действующей на вас со стороны пола и направленной поперек вашего движения. То же самое происходит в «гравитационной карусели» в окрестности (для определенности) точки L4: по мере удаления от L4 уходящее тело набирает скорость относительно этой точки Лагранжа. Но, поскольку все происходит во вращающейся системе, движущееся тело испытывает дополнительное воздействие по мере набора скорости. Результат оказывается приятным сюрпризом: баланс всех факторов в окрестности L4 таков, что при развитии сползания тело не уходит прочь, а, набрав некоторую скорость, отправляется по орбите вокруг точки L4. Все то же самое происходит и в окрестности L5. Точки L4 и L5 оказываются устойчивыми, если, как показывает математика, более массивное из двух больших тел тяжелее другого в
35
Она называется силой Кориолиса; я произношу фамилию Кориолис с ударением на последнем слоге, но не знаю, правильно ли это.
Рис. 2.7. Земля и Юпитер, если бы они могли оказаться рядом
Раз оказавшись вблизи L4 или L5 в системе Солнце – планета, астероиды имеют тенденцию там и оставаться. Сильнее всего этот эффект проявляется, разумеется, в самой гравитационно сильной паре тел в Солнечной системе. Это Солнце и Юпитер (который в 317 раз массивнее Земли; рис. 2.7). В точках Лагранжа L4 и L5 системы Солнце – Юпитер собралось, по оценкам, около 1 млн астероидов, превышающих 1 км в диаметре (возможно, примерно столько же, сколько их в поясе астероидов между Марсом и Юпитером). Они названы именами участников Троянской войны и даже разбиты по лагерям:
L4. Это лагерь греков. Застрявшие там астероиды носят, в частности, имена (начиная с тех, которые должны звучать хоть сколько-нибудь знакомо, если никуда не подглядывать): Ахилл, Нестор, Агамемнон, Одиссей, Аякс, Менелай, Филоктет, Неоптолем; а еще – Идоменей, Протесилай, Талфибий, Менесфей, Подалирий и многие другие. Но там же и Гектор – астероид, названный именем жителя Трои еще до того, как пробила себе дорогу идея номенклатурного разделения этих небесных тел на два враждующих лагеря, между которыми лежит треть орбиты Юпитера (больше полутора миллиардов километров).
L5. Здесь совсем другая картина – это лагерь защитников Трои. Среди прочих тут обитают Приам, Эней, Главк, Сарпедон, Лаокоон, Парис, если снова начинать со знакомо звучащих имен, а кроме того, Алкафой, Пандар, Пулидам, Ифидам, Сергест, Астеропей и еще многие. Единство защитников Илиона тоже нарушено, еще до появления коня: к ним присоединился Патрокл.
Рис. 2.8. Греки и троянцы по две стороны от Юпитера. Их разделяет расстояние, равное примерно десяти расстояниям от Земли до Солнца. Ближе к Солнцу, внутри орбиты Юпитера находится главный пояс астероидов
Гектор и Патрокл. Пребывание Гектора и Патрокла в «чужих» станах в парадоксальном смысле логично: именно Гектор убил Патрокла («Нет великого Патрокла! Жив презрительный Терсит!»), и только поэтому Ахилл вернулся на поле боя – где и сразил Гектора [36] .
Разумеется, ни греки, ни троянцы не сосредоточены все в одной точке, а занимают некоторый участок вдоль траектории Юпитера. Происходит все это довольно далеко от Земли (рис. 2.8), поэтому открыты они были совсем не сразу. Слово «троянцы» используют также в отношении астероидов, скапливающихся вблизи точек L4 и L5 других пар Солнце – планета; поскольку Солнце – это всегда Солнце, говорят просто о троянцах, например, Нептуна или Сатурна. Слово относится и к опережающим, и к отстающим; одного эпизода Троянской войны на Солнечную систему достаточно.
36
У Жуковского, переводившего поэму Шиллера, «презрительный» означает «презренный» или «презираемый»:
Скольких бодрых жизнь поблекла!Скольких низких рок щадит!Нет великого Патрокла!Жив презрительный Терсит!Полет из пращи. Путешествия к астероидам и планетам – это относительно далекие путешествия, оказывающиеся долгими при доступных нам скоростях. Разогнаться быстрее нелегко: топлива хватает только на что-то вроде TLI – единовременный разгон при старте с околоземной орбиты; хорошо, если потом остается еще немного на маневры. Дефицит топлива определяется трудностью его доставки к месту использования. Реактивная тяга основана на том, что, выбрасывая что-то «назад», реактивный аппарат движется «вперед»; здесь важна скорость, с которой некоторый «агент» выбрасывается назад (в подавляющем большинстве реально существующих реактивных двигателей это горячий газ). Реактивный аппарат несет с собой источник энергии для этого «выбрасывания» – в современных ракетах это горючее (например, керосин или метан) и окислитель. Их соединение обеспечивает горение, при котором и выделяется энергия. И вот здесь скрыт ключевой момент: необходимость с самого старта нести с собой все топливо (горючее и окислитель), в том числе и тот запас, который понадобится на более поздних этапах полета. Не только «полезную нагрузку», но и это топливо необходимо разогнать на более ранних этапах движения, а для этого разгона требуется дополнительное топливо, которое, в свою очередь, необходимо разогнать, для чего нужно еще сколько-то топлива, и так далее. Это удручающее положение дел математически выражается формулой Циолковского – соотношением, которое на основе законов движения Ньютона говорит, какой должна быть стартовая масса ракеты, чтобы разогнать желаемую «полезную» массу до заданной скорости, выбрасывая продукты горения с заданной скоростью относительно ракеты. Удручающим здесь является характер этой зависимости: увеличение конечной скорости достигается колоссальным увеличением массы ракеты – т. е. количества топлива – при старте.
Формула Циолковского не очень оптимистична
Но пока наши топливные возможности существенно ограничены, в дальнем путешествии можно заметно увеличить скорость, отобрав совсем ничтожную часть количества движения у встреченной по дороге планеты. Для этого действия иногда употребляют звучное название «гравитационная праща» (есть и более технический термин: «гравитационный маневр»). Это остроумный способ извлечения пользы – разгона или, когда это нужно, торможения – из совместной игры гравитации и движения [37] . Первым космическим аппаратом, исполнившим гравитационную пращу, была «Луна-3», полетевшая в космос в 1959 г. как «Автоматическая межпланетная станция». Она не только впервые выполнила этот маневр, но и впервые сфотографировала обратную сторону Луны, что вызвало колоссальный интерес и было огромным достижением, несмотря на никудышное по современным стандартам качество успешно присланных 17 (из 29 сделанных) фотографий. Пытаясь представить себе ощущение чуда от первого за всю историю человечества взгляда на то, чего увидеть «нельзя», я думаю, что качество фотографий было не самым главным в общественном восприятии этого события. (Первыми же людьми, посмотревшими на обратную сторону Луны своими глазами, был экипаж «Аполлона-8».) Луна направила станцию обратно к Земле, а из-за движения самой Луны при встрече изменилась плоскость орбиты станции: она повернулась примерно вокруг линии Земля – Луна, проведенной в момент облета Луны (рис. 2.9). «Луна-3» ушла от Луны таким образом, чтобы при возвращении к Земле пролететь над Северным полушарием и передать фотографии на станции связи на территории СССР (что оказалось непросто из-за слабости сигнала). Она вообще не имела маршевого двигателя, и весь этот полет требовалось рассчитать заранее (расчетами по Ньютону занималась команда под руководством Келдыша).
37
Идея об использовании попутных тел – например, спутников планет – для ускорения в дальних перелетах принадлежит пионеру космонавтики Ю. В. Кондратюку (под этим именем с 1921 г. жил А. И. Шаргей): он описал ее среди прочего в своей рукописи «Тем, кто будет читать, чтобы строить», написанной, вероятно, около 1919 г., но ставшей известной значительно позже.