Вход/Регистрация
Тектология (всеобщая организационная наука)
вернуться

Богданов Александр Александрович

Шрифт:

Аналогичным образом термины «такт» и «тактика», которые у нас часто прямо смешиваются, филология вынуждена ввести в разные ингрессивные цепи: «такт» по точному смыслу — осязание, ощупывание, от латинского «tango» — касаюсь; «тактика» — строительное или организационное дело, от греческого «титтсо» — строю (например, дом или войско — в боевой порядок; отсюда же происходит «техсоу» — архитектор, а равно и «тектология»).

Таких примеров можно было бы найти гораздо больше. Они показывают, что ингрессия не только есть метод соединения, но может быть и методом разъединения, следовательно, также и дезорганизации. [111] Наша иллюстрация представляет один из простейших случаев критики. Но она типически рисует основной метод всякой «разрушительной» или «опровергающей», т. е. дезорганизующей познавательные комплексы, критики.

111

В наших примерах дезорганизация лишь относительная и неполная. Разорванная непосредственная связь созвучных и близких по значению слов заменяется косвенной, идущей через огромное число промежуточных звеньев к общим древнеарийским корням, которыми объединяются разошедшиеся греческий и латинский корни в обоих случаях.

Предположим, что вы встречаете крестьянина, который по древней устной традиции продолжает думать, что кит — рыба, ингрессивно связывая представление о ките определенной, прочной ассоциацией с представлениями об окуне, щуке, карасе и проч. Вы считаете нужным «опровергнуть» заблуждение и повторяете то, что в свое время сделала эмпирически-научная критика. Вы указываете, что кит имеет млечные железы, легкие, теплую кровь и проч., как собаки, коровы, люди и другие млекопитающие; у окуня же, щуки и других рыб бывают жабры, холодная кровь, нет млечных желез и т. д. Другими словами, вы создаете ассоциативную связь между образом кита и образами собаки, кошки, лошади, т. е. ингрессивно объединяете его с иным, чем прежде, рядом представлений; в то же время разъединяете оба ассоциативных ряда, вызываете их расхождение в психике. При этом расхождении образ кита, теснее связанный с новым рядом, отрывается от старого, и цель критики достигнута.

Подобные же элементарные процессы мы найдем в основе всякой полемической, опровергающей критики, всякого «возражения» в беседе и проч. [112] Схематически они сводятся к тому, что некоторый комплекс, входящий в одну ингрессивную систему, связывается с другой и их расхождением отделяется от первой.

Но в этом общем виде схема приложима отнюдь не к одним идеологическим явлениям, а к огромной массе также и практических в области техники и социальной организации и, наконец, к бесчисленным стихийным процессам жизни и природы.

112

Это основа явления, но, напоминаю, оно не исчерпывается ею. Во всех познавательных и вообще идеологических процессах, кроме простой цепной ингрессии, есть другие формы организации.

Вы хотите сорвать растение, ингрессивно связанное с почвой своими корнями: вы охватываете его рукой, создавая новое ингрессивное соединение, затем приводите руку в движение, которое удаляет ее от почвы; растение отрывается, оставаясь в ваших руках. Дантист, вырывающий больной зуб, действует аналогично, только новая ингрессивная цепь сложнее: рука — орудие — больной зуб. И когда каменщик ударом молота отбивает кусок гранита, метод остается тот же, потому что в момент удара молот и отбиваемый кусок образуют одну ингрессивно-механическую систему. Отделение золота от горной породы соединением его со ртутью соответствует в точности той же схеме и т. д.

Аналогичным образом отрывается человек от одной организации — семьи, хозяйства, секты, партии, вступая в другую, с ней расходящуюся в том или ином практическом отношении (пространственно или по интересам, стремлениям, миропониманию и проч.).

В мертвой природе схема новой ингрессии как условия для разрыва прежней применима не менее широко: и к водному течению, извлекающему камни из их ложа и уносящему их с собой; и к ветру, обрывающему листья деревьев или лепестки цветов; и к притяжению планеты, выделяющему ближайшие к ней тельца из роя метеоритов, и т. д.

В этом ряде иллюстраций мы взяли за начало одну из познавательных, филологических связей и получили из нее путем отвлечения схему, применимую на всех ступенях бытия. Действуя так, мы имели в виду, между прочим, наглядно показать, насколько свободен тектологический анализ в выборе своего исходного пункта. Очевидно, что этим пунктом мог бы послужить любой из затронутых нами сейчас примеров или им подобных в какой угодно области опыта.

В математических операциях ингрессией пользуются на каждом шагу. Известная аксиома о равенстве двух величин, порознь равных третьей, есть, как мы говорили, просто элементарная формулировка ингрессивной связи по отношению к величинам: третья величина есть посредствующее звено цепной связи между двумя первыми. В различных доказательствах теорем, решениях задач и проч. введение промежуточных звеньев — не только в смысле равенства, конечно, а в смысле вообще функциональной связи — практикуется постоянно: в геометрических построениях — вспомогательные линии, в интегрировании — вспомогательные новые переменные и т. п.

Математическое равенство величины двух комплексов, например двух тел, не есть — надо заметить это — непосредственная связь между самими комплексами; оно есть связь их познавательных характеристик, связь понятий о них. Мы можем сказать, что число жителей такого-то города равно числу километров расстояния от Земли до Луны; это значит, что как ни разнородны взятые комплексы: один — социальный, другой — чисто пространственный, но если мы известными, строго определенными методами составляем понятия о них, то в обоих понятиях окажется нечто общее — в данном случае одно и то жр численное выражение. Одна познавательная характеристика будет 385 000 жителей, другая — 385 000 километров; общая часть — численная схема 385 000. Предположим, что оба комплекса — социальный и астрономически-пространственный — изменяются: в город приезжают новые люди; Луна благодаря пертурбационному влиянию планет отдаляется от Земли. Изменения, как видим, также совершенно разнородны и в их конкретности несравнимы; однако и после них число жителей города может оставаться равным числу километров расстояния, например если то и другое возросло на 100 своих счетных единиц. Это случай, выражаемый аксиомой, что если две равные величины подвергнуть одинаковым изменениям, например прибавить к ним поровну, то равенство не исчезнет. Как ни мало общего между сотней туристов и сотней километров пустого эфира, но численная часть познавательных характеристик благодаря тем и другим изменилась для обоих комплексов одинаково и по-прежнему может совпадать: ингрессия не разрушается. То же относится ко всякой ингрессии: то, что служит связкой двух комплексов, остается связкой между ними, если для обоих изменяется одинаково; например, винт и гайка продолжают подходить одно к другому, если их нарезку сделать в одинаковой мере шире или глубже; два куска материи одного цвета не потеряют цветовой общности, если одинаково слиняют, и т. п.

Всякая познавательная характеристика бывает лишь частична и приблизительна, ибо всякий реальный комплекс, к которому она относится, бесконечно сложен для познания своей конкретности. Частичны и приблизительны всегда поэтому и математические выражения величин комплексов. Если бы они были абсолютно точны, то никогда не получилось бы самой идеи количественного равенства. Мы принимаем расстояние между центрами Земли и Луны в 385 000 км; оно обозначается шестью цифрами. При этом фактически не только доли километра, но и целые километры и десятки километров в счет не идут: они «в пределах возможных ошибок вычисления». Если бы расстояние было определено с точностью до микронов, оно обозначалось бы пятнадцатью цифрами; при абсолютной точности потребовалось бы бесконечное число цифр. Число жителей города может, по-видимому, быть установлено вполне точно; однако это лишь потому, что мы произвольно принимаем за одинаковые единицы для нашего счета комплексы, заведомо не только разнородные, но даже несоизмеримые: личность взрослого человека, безличное существо новорожденного младенца, разложившуюся личность впавшего в детство старика, гениального мыслителя, идиота, атлета, карлика и т. д. Измерение и счет порождены практически-организационными задачами и не имели бы смысла, если бы не были только приблизительными: каждая величина развертывалась бы в бесконечное выражение и оставалась бы индивидуальной, а потому не могла бы служить орудием установления связей — познавательных или практических. Степень приблизительности или точности количественных определений всегда и зависит от конкретных задач, для которых они предпринимаются.

  • Читать дальше
  • 1
  • ...
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: