Шрифт:
Все виды энергии можно измерять в одних и тех же единицах; в естественных науках используют джоуль, а в работах по диетологии – калорию. В следующей главе, где я подробно расскажу о масштабных энергетических субсидиях в современную пищевую промышленность, мы столкнемся с разными свойствами энергии, имеющими жизненно важное значение. Производство курятины требует энергии, во много раз превышающей ту, что содержится в пригодном для еды мясе. Мы можем подсчитать уровень субсидий в виде отношения энергий (затраченные джоули/полученные джоули), однако между затраченной энергией и результатом существует очевидная разница: мы не можем питаться соляркой или электричеством, тогда как нежирное куриное мясо представляет собой почти идеальную пищу, содержащую высококачественный белок, необходимый макроэлемент, который невозможно заменить эквивалентным количеством энергии из жиров или углеводов.
Когда речь идет о преобразовании энергии, перед нами открывается широкий выбор, причем разные способы обладают разной эффективностью. Высокая плотность химической энергии в керосине и дизельном топливе подходит для межконтинентальных перелетов или морских перевозок, но, если вы хотите, чтобы подводная лодка пересекла Тихий океан, не всплывая на поверхность, лучшим решением будет расщепление урана в маленьком реакторе для выработки электричества [32] . А на земле крупные ядерные реакторы являются наиболее надежными источниками электричества: некоторые из них вырабатывают электроэнергию 90–95 % времени, тогда как для лучших морских ветряных турбин этот показатель не превышает 45 %, а для фотоэлементов – 25 % даже в самом солнечном климате (в Германии солнечные панели вырабатывают электроэнергию только около 12 % времени) [33] .
32
Friedman N. U. S. Submarines Since 1945: An Illustrated Design History. Annapolis, MD: US Naval Institute, 2018.
33
Коэффициент использования вычисляется как отношение реального производства к максимально возможному для данного устройства. Например, большая ветряная турбина мощностью 5 МВт при непрерывной работе в течение всего дня выработает 120 МВт электроэнергии; если в реальности она выдает только 30 МВт, значит, ее коэффициент использования составляет 25 %. Средние годовые коэффициенты использования в США в 2019 г.: 21 % для солнечных панелей, 35 % для ветряных турбин, 39 % для гидроэлектростанций и 94 % для атомных станций: Table 6.07. B. Capacity Factors for Utility Scale Generators Primarily Using Non-Fossil Fuels //Низкий коэффициент использования солнечных панелей в Германии не должен вызывать удивление: и в Берлине, и в Мюнхене количество солнечных дней в году меньше, чем в Сиэтле!
Все это элементарная физика или электротехника, но эти реалии игнорируются на удивление часто. Еще одна распространенная ошибка – путать энергию и мощность, и такое происходит еще чаще. Эта ошибка выдает незнание основ физики, и, к сожалению, ее совершают не только дилетанты. Энергия – это скаляр, и в физике характеризуется только величиной; скалярными также являются такие известные величины, как объем, масса, плотность, время. Мощность характеризует энергию в единицу времени и поэтому аналогична скорости (в физике скорость указывает на изменения, обычно в единицу времени). Установки, вырабатывающие электроэнергию, как правило, характеризуются мощностью, но мощность – это всего лишь скорость производства или потребления энергии. Мощность вычисляется делением энергии на время: единица ее измерения, используемая в науке, называется ватт = джоуль/секунда. Энергия равняется мощности, умноженной на время: джоули = ватты x секунды. Если вы зажжете маленькую свечку в католическом соборе, она может гореть 15 часов, преобразуя химическую энергию воска в тепло (тепловую энергию) и свет (электромагнитную энергию), а ее средняя мощность составит почти 40 Вт [34] .
34
Церковная свеча весом около 50 г, с плотностью энергии парафина 42 кДж/г содержит 2,1 МДж (50 x 42 000) химической энергии, а ее средняя мощность при 15-часовом горении составит почти 40 Вт (как у тусклой электрической лампочки). Но в обоих случаях лишь малая часть общей энергии преобразуется в свет: меньше 2 % для современной лампы накаливания и всего 0,02 % для парафиновой свечи. Вес свечи и время горения см.:световая эффективность см.: https://web.archive.org/web/20120423123823/http://www.ccri.edu/physics/keefe/light.htm
К сожалению, даже в технической литературе встречаются такие абсурдные выражения, как «электростанция вырабатывает 1000 МВт электроэнергии». Электростанция может иметь установленную мощность 1000 мегаватт – то есть вырабатывать столько электричества, – но при этом произведет 1000 мегаватт-часов или (в единицах, используемых в науке) 3,6 триллиона джоулей энергии в час (1 000 000 000 Вт x 3600 секунд). Аналогичным образом скорость основного обмена веществ взрослого мужчины (энергия, необходимая для поддержания всех функций организма в полном покое) составляет около 80 Вт, или 80 джоулей в секунду; мужчине весом 70 килограммов, неподвижно лежащему весь день, потребуется приблизительно 7 мегаджоулей (80 x 24 x 3600) пищевой энергии, или около 1650 килокалорий, чтобы поддерживать температуру тела, обеспечивать сокращение сердца, а также осуществлять мириады ферментативных реакций [35] .
35
Расчет основного обмена веществ: Joint FAO/WHO/UNU Expert Consultation, Human Energy Requirements. Rome: FAO, 2001. P. 37, http://www.fao.org/3/a-y5686e.pdf
В последнее время непонимание сути энергии привело к тому, что сторонники нового «зеленого» мира наивно призывают к почти мгновенному переходу от мерзкого грязного ископаемого топлива, запасы которого ограниченны, к более совершенному, не загрязняющему окружающую среду и возобновляемому солнечному электричеству. Но жидкие углеводороды, извлекаемые из сырой нефти (бензин, авиационный керосин, дизельное топливо, мазут) обладают наибольшей плотностью энергии из всех доступных источников и поэтому больше всего подходят для всех видов транспорта. Вот как выглядит лестница плотности энергии (в гигаджоулях на тонну): сухое дерево – 16, битуминозный уголь (в зависимости от качества) – 24–30, керосин и дизельное топливо – около 46. В терминах объема плотность энергии (все величины в гигаджоулях на кубический метр) дерева – 1, качественного угля – 26, керосина – 38. Плотность энергии природного газа (метана) составляет всего лишь 35 МДж/м3 – менее 1/1000 плотности энергии керосина [36] .
36
Engineering Toolbox. Fossil and Alternative Fuels – Energy Content (2020), https://www.engineeringtoolbox.com/fossilfuels-energy-content-d_1298.html
Значение плотности энергии – а также физических свойств топлива – для транспорта очевидно. Океанские лайнеры с паровыми турбинами не сжигают дерево, поскольку при прочих равных условиях дерево займет в 2,5 раза больший объем, чем качественный битуминозный уголь, необходимый для пересечения океана (и будет как минимум на 50 % тяжелее), что значительно уменьшит эффективность перевозки людей и товаров. Самолеты на природном газе нереализуемы, потому что плотность энергии у метана на три порядка меньше, чем у авиационного керосина; уголь тоже не подходит – разница в плотности энергии не столь велика, но он не потечет из расположенных в крыльях баков к двигателям.
Преимущества жидкого топлива не ограничиваются высокой плотностью энергии. В отличие от угля, сырую нефть гораздо легче добывать (нет нужды отправлять шахтеров под землю или портить ландшафт карьерами), хранить (в цистернах или под землей, поскольку из-за гораздо более высокой плотности энергии сырой нефти любое замкнутое пространство вмещает на 75 % больше энергии в виде жидкого топлива, чем в виде угля) и перемещать (танкерами или с помощью трубопроводов, самого безопасного вида транспортировки на большие расстояния), и поэтому она легко доступна там, где в ней возникает потребность [37] . Сырая нефть требует перегонки, чтобы разделить сложную смесь углеводородов на фракции (бензин является самой легкой фракцией, мазут – самой тяжелой), но этот процесс позволяет получить более ценные виды топлива для конкретных нужд, а также незаменимые побочные продукты, такие как смазочные масла.
37
Smil V. Oil: A Beginner’s Guide. L.: Oneworld, 2017; Maugeri L. The Age of Oil: The Mythology, History, and Future of the World’s Most Controversial Resource. Westport, CT: Praeger Publishers, 2006.
Смазка нужна для минимизации трения во всех движущихся механизмах, от громадных турбореактивных двигателей широкофюзеляжных авиалайнеров до миниатюрных подшипников [38] . Самым крупным потребителем смазочных материалов является автомобильный сектор (в настоящее время на дорогах мира насчитывается более 1,4 миллиарда автомобилей), следующей идет промышленность (самые большие рынки – текстильная, энергетическая, химическая и пищевая), затем океанские суда. Ежегодное потребление смазочных материалов превышает 120 мегатонн (для сравнения: суммарное производство всех пищевых масел, от оливкового до соевого, составляет около 200 мегатонн в год), а поскольку доступная альтернатива – синтетическая смазка, изготовленная из более простых, но, как правило, тоже получаемых из нефти компонентов, а не непосредственно из сырой нефти, – обходится дороже, потребность в них будет расти по мере роста промышленности во всем мире.
38
Mang T., ed. Encyclopedia of Lubricants and Lubrication. Berlin: Springer, 2014.