Шрифт:
А как насчет смоделированной компьютером игры в жизнь, алгоритмов, которые развиваются in silico, на кремниевом уровне, поколение за поколением или, скорее, один процессорный цикл за другим?
Другая проблема возникает при таких попытках подобрать универсальное определение: мы определяем эти свойства на примерах того, что, как мы точно ЗНАЕМ, живо. Мы берем человека, собаку или рыбу-каплю [16] (Psychrolutes marcidus – для тех, кто в теме), а дальше мы просто смотрим, что это существо делает.
16
Которая вовсе не так неприглядна, как ее пытаются выставить. Эта рыба обитает на огромной глубине, а фотографируют ее, уже когда выловят. Вот представьте, как бы выглядело ваше лицо, заставь вас позировать фотографу после того, как вас достали с глубины 4000 метров? Хватить хейтить рыбу-каплю!
Каждое из перечисленных выше живых существ обладает набором клеток, движется, растет, размножается и так далее, то есть является живым организмом в широком смысле слова. Проблема заключается в том, что с помощью этого метода мы не всегда можем распознать организмы, которые функционируют по другим правилам, даже если они (возможно) вполне живы.
Растения, которые живут в довольно трудно воспринимаемом ритме, можно наивно назвать «неживыми», как и кораллы, которые легко принять за цветные камешки. Водоросли, биопленки из бактерий или грибы, которые на первый взгляд могут показаться мусором, ставят нас перед той же проблемой. Паразиты, повинные в наших болезнях, простейшие или бактерии, тоже довольно долго ждали, чтобы их признали живыми.
Короче говоря, понять основные правила, опираясь на отдельные наблюдения, – идея так себе, и наша интуиция в этом деле нам не помощник.
Проблема приобретает еще более серьезные масштабы, когда мы сталкиваемся с организмами, которые были открыты совсем недавно и больше не укладываются в «классические» определения живых существ. Само собой, больше всего спорят о вирусах, поскольку они не имеют клеток и представляют собой обрывки нитей ДНК или РНК, защищенные капсидом. Но есть и другие внутриклеточные организмы размером в несколько нанометров, которые также балансируют на грани общепринятого понятия жизни.
В 1950-х австралийские офицеры патрулировали Восточное нагорье Папуа (в те времена это была колония), когда они обнаружили, что племя форе поражено странной болезнью. У людей возникали проблемы с мышечной координацией, они едва держались на ногах, разражались неконтролируемым смехом, в итоге переставали двигаться и умирали.
Это страшное нейродегенеративное заболевание получило название куру. Его можно сравнить с болезнью Крейтцфельдта – Якоба: мозг поражает частица, которая называется прионом. Жившие в Папуа форе получали прионы через ритуальный каннибализм, поедая мозг умершего родственника. Этот обычай способствовал эффективному распространению вирусной частицы среди населения. Принятые властями санитарные меры постепенно искоренили болезнь.
Однако самое удивительное во всей этой истории – природа самой частицы, приона.
Подобно остальным вирусам, «живая» природа этого образования вызывает много споров, и сам его механизм еще очень плохо изучен. Известно, что это белок, который спирально складывается различными способами, и некоторые его патогенные конформации «загрязняют» другие белки, заставляя их складываться так же, как и он. Они в свою очередь тоже становятся патогенами и заставляют другие белки принимать ту же структуру и так далее. Этот весьма оригинальный процесс размножения не требует сложных клеточных механизмов. Поэтому прионы могут быстро распространяться без участия ДНК!
Споры вызывают и другие биологические объекты. Являются ли живыми сателлиты, плазмиды и транспозоны – обрывки ДНК или РНК, интересы которых могут расходиться с интересами их носителя? Но самый удивительный пример – это вироиды, свободные кольцевые нити РНК, которые используют клетки других организмов. Эти молекулы представляют собой последовательности всего из нескольких сотен нуклеотидов, которые размножаются, подобно паразитам. Здесь нет клеточного механизма, есть только строка молекулярного кода, который воспроизводится на протяжении тысяч, миллионов, миллиардов лет. Мы ничего не знаем ни о них самих, ни об их истории. Существовали ли они в этой форме с момента зарождения жизни или являются результатом предельного упрощения организма-предка? Пока никто не может ответить на эти вопросы.
В любом случае строить определения на примере самих себя – метод довольно бесполезный, когда нужно описать нечто совершенно на нас не похожее. То, что похоже на нас, входит в группу, но пытаться классифицировать то, что находится на периферии… ну, это уже посложнее.
На самом деле эта проблема напоминает трудности, с которыми столкнулись алхимики XVI века, пытаясь определить понятие «вода». В те времена еще не существовало молекулярной теории, которая позволяла бы классифицировать молекулы в соответствии с их атомным составом. Поэтому воду определяли не как «один атом кислорода и два водорода» – у нее было гораздо более размытое понятие, обернутое в прилагательные, которые описывают растворимость, цвет, плотность. А ученые пытались придумать чистое, идеальное определение, набор прилагательных, которые могли бы полностью охватить понятие «вода» – как мы сегодня пытаемся полностью охватить понятие «жизнь».
Таким образом, различали «крепкую воду» (aqua fortis), «королевскую воду» (aqua regia) и «живую воду» (aqua vitae). По иронии, ни одна из этих вод не состояла из молекулы H2O: крепкая вода – это азотная кислота, королевская вода – смесь азотной и соляной кислот, а живая вода – это, само собой, крепкий алкоголь.
Биолог, который попытался бы определить жизнь так же, как алхимики в свое время пытались определить воду, называя ее самые очевидные свойства, был бы неправ. Невозможно сформулировать точное определение жизни без эквивалента молекулярной теории, которая в итоге позволила описать воду.