Шрифт:
Таким образом, с помощью чтения генома можно раскрыть тайны закодированного в нем долголетия и изменить жизнь человека к лучшему, активировав «гены бессмертия» и защитив их от повреждений.
Что такое метагеном?
Технология секвенирования открыла новые горизонты не только перед генетиками, но и перед микробиологами. Ранее ученые могли исследовать геном только тех микроорганизмов, которые можно было вырастить на питательных средах. Благодаря секвенированию появилась возможность получать информацию о микробах, имея в распоряжении только их ДНК, РНК или даже фрагменты генетического материала. Развитие этой технологии привело к появлению нового раздела молекулярной генетики – метагеномики. В рамках этой дисциплины эксперты изучают гены не конкретных клеток в составе организма или в микробных клетках, а метагеном – совокупность всех генов в каком-либо образце.
Образцы для последующего метагеномного анализа могут быть получены из различных участков тела человека: метагеном полости рта, кожи кишечника, влагалища. Также это могут быть образцы, полученные из окружающей среды. Например, в 2003 году ученые использовали метод секвенирования для метагеномного анализа проб океанской воды, полученных из различных уголков планеты [3]. В результате только в образце из Саргассова моря эксперты обнаружили порядка двух тысяч образцов ДНК различных видов, в том числе 148 бактерий, ранее неизвестных науке.
Изучение метагенома помогает не просто провести генетический анализ микробов, но понять законы, по которым живут микробные сообщества, отследить их взаимное влияние и метаболические цепи. Это позволяет получить глубокое представление о жизни микромира внутри нас и вокруг нас.
Заключение
В настоящее время анализ ДНК составляет основу биологических исследований и применяется в биотехнологиях, вирусологии и медицинской диагностике. Разрабатываются и совершенствуются новые технологии для распознавания различных заболеваний, таких как диабет, рак, нейродегенеративные и сердечно-сосудистые болезни, которые сильно снижают качество жизни и вносят большой вклад в общую статистику смертности населения. Ранняя диагностика и точное лечение, которые становятся возможными благодаря генетическим методам и глубокому пониманию строения организма на молекулярном уровне, приведут к продлению жизни и помогут победить старение.
Глава 3. Эпигенетика
Эпигенетика – относительно новое направление генетики, которое называют одним из самых важных открытий с момента расшифровки ДНК, поскольку оно обещает перевернуть всю нашу жизнь, а также жизни наших потомков. Ранее считалось, что генетический код, с которым мы рождаемся, определяет все наше существование. Однако теперь известно, что генами можно управлять: «включать» или «выключать» их под воздействием различных факторов, например образа жизни или окружающей среды. Это значит, что генетика отнюдь не предопределяет наше состояние здоровья или продолжительность жизни – мы сами «нажимаем на кнопки» генетических изменений и тем самым управляем своей дальнейшей судьбой.
«Над» генетикой
Эпигенетика (приставка эпи- с древнегреческого языка переводится как «над», «сверху») – наука, которая изучает процессы, приводящие к изменению активности генов без изменения последовательности ДНК. Говоря простым языком, она исследует то, как гены «включаются» или «выключаются» под воздействием факторов внешней среды. Можно представить, как некий «командир» отдает приказы генам в определенный момент работать или, наоборот, отдыхать (или «молчать») в зависимости от полученного сигнала. Таким «командиром», определяющим активность генов, выступает эпигеном, а сигналами для него служат экологическая среда, режим питания, физические нагрузки, вредные и полезные привычки, токсины, вирусы, биохимические процессы, происходящие в организме, а также мысли, эмоции, чувства и поведение человека.
ДНК можно назвать кодом, который организм использует для построения и перестройки самого себя. Но и самим генам нужны «инструкции», по которым можно выстроить ход и время своей работы. И сборником таких «инструкций» выступает наш другой код – эпигенетическая программа, которая сообщает организму, как в действительности должны работать наши гены.
Как работает эпигенетический механизм
Основные пути регуляции активности генов – модификация гистонов и метилирование. Гистоны – особые белки, на которые, как на катушку, намотана ДНК в ядре клетки, что образует плотную упаковку – нуклеосому. Чем плотнее эта упаковка, тем меньше ДНК доступна для ферментов, ведущих транскрипцию – синтез РНК по матрице ДНК. А поскольку меньше РНК, постольку меньше производится белка. Это значит, что ген в этой области будет мало или вовсе не активен. Однако сигналы, получаемые из внешней для клетки среды, могут способствовать более свободному расположению этих «катушек», благодаря чему ферменты получают доступ к этому участку ДНК. Это значит, что РНК, а затем и белки могут быть синтезированы – ген активен.
Второй способ регуляции генов – метилирование, то есть присоединение к ДНК метильной группы – CH3, в результате чего цитозин превращается в 5-метилцитозин. После получения сигнала метильная группа прикрепляется к ДНК, чем препятствует связыванию с ней ферментов и меняет плотность нуклеосомы, как и при модификации гистонов, делая гены неактивными. Процесс, обратный метилированию, то есть деметилирование, напротив, активирует ранее «молчавшие» гены, что способствует образованию новых белков.
Процесс активизации гена
Понимание механизмов, «включающих» и «выключающих» гены, может дать науке и медицине возможность управлять процессами старения, а также держать под контролем и лечить разные заболевания, имеющие в том числе наследственную природу. Скажем, в развитии рака часто «виновны» гены, «вышедшие из-под контроля», – их «заглушение» позволит прекратить дальнейшее разрастание опухоли. Поэтому за исследования в этой области присуждаются самые престижные научные премии: например, в 2006 году за открытие еще одного эпигенетического механизма – РНК-интерференции – американским ученым Эндрю Файру и Крейгу Меллоу была вручена Нобелевская премия.