Шрифт:
Матрица плотности становится истинной матрицей, если она представлена в некотором базисе функций Xk(r), т. е. определяется совокупностью матричных элементов Pkl, по которым можно воспроизвести (r|r') согласно равенству
В качестве функций Xk(r) в квантовой химии чаще всего используются атомные орбитали, центрированные на ядрах атомов, образующих молекулу. Например, для молекулы Н2+ матрица плотности в двухцентровом базисе 1s-орбиталей атомов водорода имеет вид
где S — интеграл перекрывания базисных АО.
Матричные элементы Рkl получаются из коэффициентов разложения МО в базисе АО:
по формуле
Зависимость матрицы плотности (r|r') от r и r' не следует понимать в том смысле, что она зависит от координат двух частиц.
В действительности r и r' представляют собой две различные (но возможно и совпадающие) точки пространства, в которых может быть локализована одна рассматриваемая частица. При этом плотность вероятности локализации ее в некоторой точке r равна диагональному элементу
33
Функция Дирака (r — r') относится к классу так называемых обобщенных функций и определяется равенством
и определяется по формуле
Использование матрицы плотности вместо волновой функции устраняет указанную выше неоднозначность в квантовомехани-ческом описании состояния частицы. В то же время такое описание является более общим и позволяет характеризовать одночастичные состояния для систем, содержащих несколько различных или тождественных частиц, хотя точное описание этих состояний с помощью волновых функций невозможно.
Пусть некоторое состояние W-электронной системы задано антисимметричной нормированной функцией (x1,..., xN), где хi обозначает совокупность пространственных координат (ri) и спиновой переменной (i) i-гo электрона. Тогда N-электронная матрица плотности N определяется аналогично одноэлектронной (4.6):
Диагональные элементы матрицы плотности N характеризуют вероятность того, что первый электрон локализован в точке x1, в то время как второй — в точке х2, третий — в точке х3 и т д. Конечно, в силу неразличимости электронов их нумерация является произвольной.
Рассматриваемые N электронов могут входить в состав системы включающей также и другие частицы. Например, молекулы состоят из электронов и атомных ядер, образующих единую систему. Пусть состояние последней определяется нормированной функцией (x1,..., xN,), причем обозначает совокупность переменных всех частиц, не являющихся электронами (т. е. ядер). Состояние N-электронной системы в общем случае не может описываться -функцией и в этом смысле не является чистым [34] . Но оно может характеризоваться N-частичной редуцированной матрицей плотности:
34
В так называемом адиабатическом приближении электронной системе в молекуле сопоставляется определенная -функция, которая зависит и от ядерных координат.
Термин "редуцированная" в применении к матрице плотности означает, что некоторые переменные в левом и правом наборах ее аргументов отождествляются
Подобным образом определяются редуцированные матрицы плотности для k-электронных подсистем N-электронной системы:
Целесообразность введения множителя
и нормирована на число электронов N:
Часто используют бесспиновую матрицу плотности
где проведено интегрирование (или суммирование) по спиновой переменной .
Отметим теперь некоторые используемые в дальнейшем математические свойства редуцированных матриц плотности.
Вследствие антисимметричности N-электронной функции (или ) относительно перестановок электронных переменных
k-частичные матрицы плотности при
Из определения k следует также, что
Учитывая сказанное на с.102 об интегральном представлении операторов