Шрифт:
“Мы сделали малошумящие усилители и часть оборудования криостата”, – рассказывает он, добавляя, что бэкенд [19] приемника Parkes на самом деле создан в обсерватории Джодрелл-Бэнк. Вскоре после того, как в 1999 году многолучевой приемник установили на телескопе Parkes, такой же, хоть и с четырьмя рупорными облучателями, был помещен и на телескоп Lovell. До появления многолучевого приемника у радиотелескопов обычно был всего один рупорный облучатель. Когда радиоволны от отдаленных объектов достигают параболической антенны, они, отражаясь, собираются в ее фокусе и попадают в рупорный облучатель. Один рупорный облучатель собирает сигналы, которые затем усиливаются в приемнике и преобразуются в электрический сигнал. При такой схеме каждый раз телескоп можно направлять только на один маленький участок неба, а значит, наблюдение больших участков требует больших затрат времени.
19
Бэкенд – программно-аппаратный раздел сервиса, отвечающий за функционирование его внутренней части.
И тут на помощь приходит многолучевой приемник. Большее число рупорных облучателей позволяеттелескопу одновременно обследовать несколько соседних участков неба, и тем самым все небо можно охватить гораздо быстрее, чем при одном рупорном облучателе. Волны от каждого рупорного облучателя попадают в отдельный приемник, и каждая рупорная антенна имеет две поляризации. У многолучевого приемника Parkes тринадцать рупорных облучателей, а значит, всего получается двадцать шесть выходов. Так Parkes эффективно и дешево превратился в радиотелескоп с существенно большим отражателем. “Инициатива использовать приемник для наблюдения пульсаров принадлежит Эндрю Лайну. Он же одну за другой разработал системы аналоговых фильтров, позволяющих их отыскивать, – замечает Мэтью Бейлз, астроном из Технологического университета Суинберна. – Постепенно мы модифицировали наборы фильтров, которые для обзоров Вселенной с высоким временным разрешением должны были быть цифровыми”. Позднее именно эти обзоры позволили обнаружить большинство из первых тридцати FRB и убедить мир, что такие загадочные вспышки радиоизлучения реальны.
С 2004 года многолучевой приемник с семью рупорными облучателями есть как у телескопа Arecibo в Пуэрто-Рико, так и в Китае у нового гигантского сферического телескопа FAST с пятисотметровой апертурой и неподвижным основным отражателем. Он был построен CSIRO, и в настоящее время это самый большой криогенный приемник16.
Чуть глубже: Экзотический мир рентгеновских источников
Имеется странный подкласс необычно ярких астрономических объектов – аккрецирующих двойных систем, излучающих в рентгеновском диапазоне. Впервые их заметили в 2014 году, когда астрономы обнаружили пульсации, которые приняли за пульсации черной дыры в системе, классифицированной как сверхъяркий рентгеновский источник, или ULX (ultra-luminous x-ray source). Они были известны с 1980 года. Тогда астрономы впервые наблюдали чрезвычайно яркие точечные рентгеновские источники, излучение которых на всех длинах волн превышало излучение миллиона Солнц. Исследование таких пульсаций в 2014 году показало, что по крайней мере некоторые из них – нейтронные звезды. К настоящему времени мы знаем о шести [20] таких объектах17.
20
По состоянию на сентябрь 2022 года известно семь таких объектов. – Прим, науч. ред.
Ли Таунсенд, астроном из Кейптаунского университета, в первый раз заметил пульсации одного из этих странных “чудищ” в 2016 году, когда зафиксировал рентгеновскую вспышку такого источника. Объект, известный как массивная рентгеновская двойная система в Малом Магеллановом Облаке, Таунсенд изучал уже много лет. Его поведение соответствовало поведению обычной аккрецирующей двойной рентгеновской системы, и излучение было ожидаемым. Внезапно произошла мощная вспышка, в тысячу раз ярче, чем все, когда-либо виденные Таунсендом, что переводило объект в разряд ULX. “Это один из первых случаев, когда мы действительно увидели переход нормальной рентгеновской двойной системы в режим ULX, – рассказывает Таунсенд. – И это одно из немногих имеющихся свидетельств того, что рентгеновские двойные системы действительно могут быть связаны с ULX”.
По словам Таунсенда, он был ошеломлен мощностью аккреции, которая в десять-двадцать раз превышала предел Эддингтона, определяющий максимальную светимость в зависимости от массы звездного тела. “Даже сегодня остается загадкой, почему так произошло. Никто достоверно не знает, почему в подобных системах аккреция столь велика”, – добавляет он.
Чуть глубже: Хронометрирование пульсаров
Обычно всплески излучения одиночного пульсара настолько регулярны и так точно синхронизированы, что на протяжении десятилетий стабильность некоторых из них может соперничать с точностью атомных часов. Отдельные пульсации происходят через регулярные интервалы, складываясь в поразительно стабильный усредненный профиль пульсаций – характеристику, которую можно использовать, чтобы определить, когда всплеск достигнет Земли.
Но примерно в 10 % случаев, когда пульсар входит в двойную систему и движется вместе со своим компаньоном, возможны очень небольшие, но регулярные изменения моментов прихода импульсов пульсара в точку наблюдения. Хронометрирование (иногда еще говорят “тайминг”) – это метод отслеживания появления этих импульсов.
Когда, обращаясь вокруг своего компаньона, пульсар удаляется от Земли, длина волны импульсов увеличивается (имеет место красное смещение) и каждую секунду их регистрируется меньше. Когда же пульсар приближается к Земле, длина волны импульсов уменьшается и каждую секунду их регистрируется больше. Это связано стак называемым эффектом Доплера. Вот, вероятно, самый известный пример этого эффекта из нашей повседневной жизни. Если скорая помощь быстро едет по направлению к нам, волны звука, издаваемого сиреной, сжимаются, что означает уменьшение длины волны и увеличение частоты (высоты звука). При этом импульсы становятся ближе друг к другу – и мы слышим “виу-виу-виу”. Но в тот момент, когда скорая помощь проносится мимо и начинает двигаться от нас, волны растягиваются и высота (частота) звука сирены понижается. Теперь мы слышим “вииу… – вииу… – вииу…”18
С чем же связаны вариации времени прихода сигнала на Землю? Обычно излучение распространяется вдоль прямой линии, но, в соответствии с общей теорией относительности Эйнштейна, в присутствии сильного гравитационного поля, такого как вблизи массивных тел, ткань пространства-времени искривляется, излучение “следует” за кривизной пространства – и траектории фотонов изгибаются. Чем плотнее объект, тем сильнее изгибается вблизи него свет. В 1919 году сэр Артур Эддингтон, директор астрономической обсерватории в Кембридже, и королевский астроном сэр ФрэнкУотсон Дайсон подтвердили справедливость общей теории относительности. Во время полного солнечного затмения они с помощью телескопов получили изображение участка неба с Солнцем в центре и отметили расположение звезд вокруг него в момент съемки. Сравнение этого изображения с изображением тех же звезд, сделанным через пару месяцев, когда Солнца уже рядом с ними не было, позволило увидеть искривление световых лучей гравитационной силой Солнца. Когда Эйнштейн узнал об этом, он написал матери: “Сегодня хорошие новости… британские экспедиции на самом деле доказали, что вблизи
Солнца световые лучи искривляются”19. Из-за искривления свет идет к нам дольше, чем если бы он распространялся по прямой. Компаньон пульсара изгибает излучение на его пути к Земле. Задержка сигнала – дополнительное время, которое требуется излучению для достижения телескопа, – называется эффектом Шапиро. Подобные измерения и законы Кеплера позволяют установить орбиты обоих объектов, а исходя из этого – оценить массы, необходимые для создания подобных орбит. Хронометрирование годами ведут самые разные телескопы, включая Lovell в Великобритании, Parkes в Австралии, FAST в Китае, Green Bank Telescope в Соединенных Штатах и Arecibo в Пуэрто-Рико.