Вход/Регистрация
Искусственный интеллект. Начало новой технологической революции: вызовы и возможности
вернуться

Маков Р. С.

Шрифт:

Революция глубокого обучения

В начале XXI века искусственный интеллект вступил в новую фазу своего развития благодаря революции в области глубокого обучения. Глубокие нейронные сети, состоящие из множества слоев и способные обучаться на больших объемах данных, показали поразительные результаты в решении сложных задач, таких как распознавание речи, машинный перевод и игра в настольные игры. Важным вкладом в развитие глубокого обучения стали работы Яна Лекуна, Джеффа Хинтона и Йошуа Бенджио, которые были удостоены премии Тьюринга за свои достижения в этой области.

Искусственный интеллект сегодня

Сегодня искусственный интеллект является одной из самых активно развивающихся и влиятельных областей науки и технологии. Мощные алгоритмы машинного обучения и доступность больших объемов данных позволяют создавать системы, способные автоматизировать множество задач, которые ранее считались исключительно прерогативой человека. Искусственный интеллект внедряется в различные отрасли, включая медицину, образование, производство, финансы и развлечения, и изменяет нашу жизнь и общество.

В данном подразделе мы рассмотрели краткую историю развития компьютеров и искусственного интеллекта, начиная с создания первых электронных машин и заканчивая последними достижениями в области глубокого обучения. Мы увидели, как эволюция компьютерной техники и новые концепции и алгоритмы привели к возникновению и развитию искусственного интеллекта, который в настоящее время играет огромную роль в нашем обществе и проникает во все сферы жизни. Однако развитие искусственного интеллекта никогда не было линейным, и на его пути возникали как заметные успехи, так и разочарования. Взгляд на историю этой области позволяет нам лучше понять современные тенденции и задачи искусственного интеллекта и сформировать представление о его возможном будущем.

1.2. Текущий уровень развития технологии

1.2.1 Современные подходы к разработке ИИ: машинное обучение и глубокое обучение

Машинное обучение: основные принципы

Машинное обучение – это подраздел искусственного интеллекта, который изучает алгоритмы и

статистические модели, позволяющие компьютерам учиться и делать предсказания или принимать решения на основе данных. В отличие от классических алгоритмов, которые следуют строго определенным правилам, алгоритмы машинного обучения "обучаются" на основе примеров, представленных в виде обучающей выборки.

Основная идея машинного обучения заключается в том, что компьютерная программа должна быть способна самостоятельно "выработать" правила и закономерности, присущие данным, а затем использовать их для решения новых задач. Машинное обучение включает в себя множество методов и подходов, таких как регрессионный анализ, деревья решений, случайные леса, опорные векторные машины и многое другое.

Глубокое обучение: прорыв в области искусственного интеллекта

Глубокое обучение – это подраздел машинного обучения, который занимается изучением и разработкой нейронных сетей с большим количеством скрытых слоев (глубоких нейронных сетей). Благодаря своей структуре и способности обучения, глубокие нейронные сети способны обрабатывать огромные объемы данных и выявлять сложные закономерности и зависимости, что делает их особенно эффективными в решении задач, связанных с распознаванием образов, обработкой естественного языка и рекомендательными системами.

Одним из важных достоинств глубокого обучения является его способность к автоматическому выделению признаков из данных. Вместо того чтобы полагаться на инженерию признаков и экспертные знания для определения наиболее релевантных переменных, глубокие нейронные сети самостоятельно находят наиболее информативные признаки в процессе обучения. Это позволяет упростить процесс разработки и настройки моделей и обеспечивает высокую производительность в решении сложных задач.

Основные типы глубоких нейронных сетей

Существует множество различных архитектур глубоких нейронных сетей, каждая из которых оптимизирована для решения определенных задач. Ниже приведены некоторые из наиболее популярных и широко используемых архитектур:

Сверточные нейронные сети (CNN) – особенно эффективны в задачах распознавания образов и обработки изображений. Они используют специальные сверточные слои для анализа локальных свойств изображений, таких как границы, углы и текстуры.

Рекуррентные нейронные сети (RNN) – применяются для обработки последовательностей данных, таких как временные ряды, аудио сигналы и текст. Рекуррентные слои сохраняют информацию о предыдущих состояниях и используют ее для прогнозирования следующих состояний.

Сети с долгосрочной краткосрочной памятью (LSTM) и гейтовые рекуррентные единицы (GRU) – разновидности рекуррентных нейронных сетей, особенно эффективные в решении задач с долгосрочными зависимостями между элементами последовательности.

Трансформеры – архитектура, основанная на механизмах внимания, которые позволяют моделям определять взаимосвязи между различными частями последовательности без использования рекуррентных или сверточных слоев. Трансформеры считаются наиболее эффективными для обработки естественного языка и стали основой таких моделей, как BERT, GPT и T5.

  • Читать дальше
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: