Вход/Регистрация
Сказка о том, как астрономы и часовщики спасали моряков
вернуться

Горькавый Ник

Шрифт:

— Я не знаю, что такое тангенс! — насупилась Галатея.

— Это очень простая штука, сейчас объясню, — сказал Майкл. — Предположим, что длина тени равна длине зонта, значит, их отношение равно единице. Чему равен верхний угол в таком треугольнике?

— Это я знаю, — облегчённо сказала Галатея. — Треугольник стал половиной квадрата, значит, верхний угол равен половине прямого угла, или 45 градусам.

— Верно! — просиял Майкл и быстро написал на листке бумаги слева «45 градусов», а справа единицу.

— А если длина тени стремится к нулю, то и угол равен нулю! — и Майкл добавил два нуля в таблицу — только в самый низ страницы.

— Теперь будем задавать другие значения отношения длин тени и зонта — от нуля до единицы, а потом измерим получившиеся углы. Так мы заполним все строчки в таблице. Например, для отношения длины тени и зонта, равного 0,5, мы можем измерить верхний угол, и он окажется равным 26,6 градуса. Можешь ли ты, Галатея, заполнить такую таблицу сама, если я дам тебе линейку для черчения треугольников и угломер для измерения углов?

— Конечно, могу, — заявила Галатея.

— Прекрасно! — улыбнулся Майкл. — Теперь представь, что какой-то древний математик сделал это впервые, посмотрел в таблицу и сказал: «Отношение горизонтальной и вертикальной сторон в таком прямоугольном треугольнике есть функция верхнего угла. Отныне пусть эта функция называется тангенсом!»

— Вот так просто? — не поверила ушам Галатея. — Составить таблицу примитивных измерений и объявить это тангенсом?

— Да, только надо сделать это первым. А потом надо ввести таблицу во все калькуляторы, чтобы я мог задать калькулятору любую длину тени, а он, сверившись с таблицей тангенсов, сразу выдал бы мне величину верхнего угла в выбранном мной треугольнике.

— Если я возьму и составлю таблицу отношений длины горизонтальной тени не к длине зонта, а к длине наклонной линии в этом треугольнике и буду потом измерять верхний угол, это ведь будет другая функция? — спросила недоумевающая Галатея.

— Конечно! — воскликнул Майкл.

— Это будет функция, которая называется синусом!

Галатея напряжённо впилась взглядом в таблицу.

Дети спорили про синусы и тангенсы, пока не принесли вкуснейшие пирожные и душистый чёрный чай с мятой. Пока то да сё, время пролетело, и позвонил Роберт.

— У нас Солнце достигло максимальной высоты в 13 часов и 22 минуты!

Майкл уточнил:

— По гринвичскому времени, которое отстаёт от нашего на целый час, так как располагается в другом часовом поясе. Итак, гринвичский полдень настал позже нашего на 1 час и 4 минуты. Земля делает оборот в 360 градусов за 24 часа, следовательно, запаздывание Солнца на 4 минуты соответствует смещению долготы на один градус. Значит, между нами и Гринвичским меридианом примерно 16 градусов. Долгота Гринвичского меридиана — ноль, это означает, что наше местоположение соответствует 16 градусам восточной долготы. Роберт, а какой угол отбрасывала ваша тень в этот момент?

— 41,5 градуса от вертикали.

— Значит, разница в широтах между нами и Гринвичем — 12 градусов. Каждый моряк знает, что широта Гринвича — 51,5 градуса, значит, он легко найдёт нашу широту — 39,5 градуса северной широты.

— Здорово! — восхищённо сказал Андрей, а Галатея недоверчиво покачала головой и попросила принести географическую карту. Принесли карту Европы, и Галатея поползла — или поплыла? — по ней, пыхтя, как старый паровой буксир. Потом она спросила:

— А если бы мы находились не в Бельведере-Мариттимо, а в испанской Валенсии? Она расположена возле нулевой долготы, значит, Солнце в Лондоне и в Валенсии достигает максимальной высоты в одно время?

— Да, между этими городами существует лишь разница в широтах. Кстати, ты можешь определить по карте расстояние между Валенсией и Лондоном?

Галатея с помощью Андрея и линейки измерила расстояние между городами.

— 1335 километров!

— Отлично! — обрадовался Майкл.

— А вот теперь догадайтесь, как можно определить длину окружности Земли, зная, что между широтами Лондона и Валенсии разница в 12 градусов, а расстояние между этими городами 1335 километров? Такую задачку в своё время решил древнегреческий математик и астроном Эратосфен (276 г. до н.э. — 194 г. до н.э.) для двух египетских городов, расположенных примерно на одной долготе.

Дети задумались. Первым сообразил Андрей:

— 12 градусов — одна тридцатая окружности в 360 градусов! Значит, длина земной окружности в 30 раз больше, чем расстояние между Лондоном и Валенсией. Это будет… это будет 40 тысяч километров и ещё… ещё 50 километров!

Майкл восхитился:

— Прекрасный, очень точный ответ!

Галатея немедленно надулась на Андрея.

Майкл спросил:

— Ну, теперь понятно, как точные часы, которые ходят одинаково в разных точках мира, могут помочь определить широту и долготу? Если бы у меня были таблицы времени достижения максимальной высоты Солнца в Гринвиче каждый день, то я смог бы определить наши координаты без помощи Роберта. Таблицами, указывающими положение Солнца на год вперёд, пользовались моряки прошлых веков. Они замеряли время максимальной высоты Солнца в разных концах света, куда их заносила судьба. Но во времена Ньютона самые точные часы были снабжены механическим маятником. В условиях качки такие хронометры могли отставать на десять минут в сутки, и за долгие месяцы плавания ошибка в ходе часов накапливалась огромная.

  • Читать дальше
  • 1
  • 2
  • 3
  • 4

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: