Шрифт:
Но разве мозг сам не работает как компьютер, разве он не обрабатывает входящую информацию и не выдает исходящую? Так ли уж велико различие между вычислением и пониманием? Не являются ли нейроны сами миллионами таких «китайских комнат»?
Но именно эти вопросы искусственный интеллект и не должен решать, поскольку был создан для воспроизведения операций разума, а не работы мозга. Иначе говоря, для «понимания» ИИ необходимо, чтобы он был наделен нейронными биохимическими механизмами, а потому и обладал определенной биологической формой, но тогда он перестанет быть «искусственным». И наоборот: компьютер по определению ограничивается символами и формальными корреляциями, поскольку сама суть цифровых систем в том, чтобы применять к реальности код (последовательность цифр и операций). Нет нужды проникать в механизмы мозга, поддерживающие интенциональность, чтобы сделать вывод, что она не имеет никакого отношения к роботам. Кроме того, можно вполне обоснованно утверждать, что роботы не мыслят, если, конечно, придерживаться полного материализма. Кстати, Серл предупреждает, что тот, кто хотел бы отделить производимые разумом операции от материи, из которой состоит мозг, и уподобить их формальным программам обработки информации, вернулся бы тем самым к метафизическому дуализму. А ведь информатика вроде бы его изобличает…
Таким образом, мысленный эксперимент с «китайской комнатой» позволяет провести четкое различие между симуляцией, представляющейся целью искусственного интеллекта («Я манипулирую символами на китайском языке»), и пониманием («Я прямо отвечаю, используя свою интенциональность»). «Никто же не предполагает, что компьютерная симуляция пожара может сжечь район или что можно намокнуть под симуляцией ливня. Откуда же берется предположение, – удивляется Серл, – что цифровая симуляция мышления способна что-нибудь понимать?»
Это рассуждение остается верным и в эпоху машинного обучения, достаточно лишь немного изменить эксперимент «китайской комнаты». Теперь нужно представить, как в комнату забрасывают не отдельные листы с иероглифами, которые можно связать друг с другом в соответствии с четко сформулированными правилами, а цепочки завершенных фраз на китайском, никак не связанных между собой. Сидя в этой комнате, вы должны были бы усвоить несколько миллионов таких фраз, пытаясь определить закономерности и корреляции между появлением того или иного иероглифа. Потом вы смогли бы, наконец, ответить на вопрос в письменном виде, подсчитав максимальную вероятность того, что такая-то последовательность иероглифов действительно имеет смысл. В рамках технологии обучения с подкреплением (reinforcement learning) вас могли бы бить по пальцам при всяком неправильном ответе и выдавать чашку риса в случае успеха, постепенно улучшая ваши навыки. Тем не менее вы все равно не сможете ни слова сказать по-китайски… Вот так же и компьютер, пусть даже после самого совершенного глубокого обучения, все-таки ничего «не понимает».
Как мы можем проверить эту философскую теорию? ИИ обладает определенным экспериментальным применением, в частности в шахматах. Джон Маккарти назвал их «дрозофилой ИИ» – по аналогии с той мухой, которую биологи постоянно используют в своих опытах, проверяя на ней тысячи теорий. Создать компьютер, способный победить гроссмейстера-человека, что якобы делал и механический турок, – вот как издавна представлялась главная цель в понимании процессов человеческого познания.
Увы! Deep Blue, творение компании IBM, выиграл у Гарри Каспарова в 1997 году, но это не помогло нам лучше понять тайны нейронных связей. Каспаров сам объясняет это в глубокой и остроумной книге, посвященной его поражению, а также в целом отношению человека к ИИ [27] . «Мы путаем исполнение – способность машины повторить или превзойти результаты человека – с методом, которым достигаются эти результаты», – пишет он. Deep Blue «рассуждает» не так, как шахматист. Он работает в соответствии с совершенно иными принципами. Если человек может формулировать общие положения, равноценные понятиям (например, «мой король слаб»), и применять долгосрочные стратегии, то компьютер должен на каждом ходе производить все расчеты заново. Иначе говоря, человек, чтобы играть, создает для себя истории; анализ исторических шахматных партий напоминает военные мемуары, в которых можно прочесть про атаки, отступления и ловушки. Эти истории позволяют человеку быстро сортировать возникающие возможности, выбирая приоритеты. Они демонстрируют описанную Серлом интенциональность, способность к проекции, присущую человеческому интеллекту. Подобные вымыслы чрезвычайно полезны, ведь без них шахматы – с их королем, королевой, солдатами и офицерами – просто не были бы изобретены. Для компьютера все иначе, поскольку он просматривает миллионы комбинаций, не имея заранее установленного плана. Операции, производимые машиной, несоизмеримы с траекторией движения человеческого разума, в том числе в такой вроде бы совершенно логичной игре, как шахматы. Поэтому Каспаров приходит к выводу, что Deep Blue не более разумен, чем программируемый будильник. Название, которое получил в прессе этот памятный турнир, – «Последний шанс для мозга» – было выбрано на редкость неудачно.
27
Каспаров Г. Человек и компьютер: взгляд в будущее. М.: Альпина Паблишер, 2018.
То, что относится к Deep Blue, монстру брутфорса, работающему на основе чистой комбинаторики, еще более верно в случае техник машинного обучения. Каспаров с иронией вспоминает о первых опытах 1980-х годов, когда шахматные программы спешили пожертвовать ферзем, поскольку обучались на партиях гроссмейстеров, в которых жертва ферзем обычно означает блестящий ход, ведущий к победе. Действуя на основе корреляции, компьютер не может провести различие между причиной и следствием. Сегодня прогресс машинного обучения в сочетании с классическими методами дерева поиска позволил AlphaGo, представляющемуся наследником Deep Blue, побить чемпиона мира по го – игре, которая намного более интуитивна, чем шахматы. Вместо того чтобы запоминать миллиарды партий, машина теперь тренируется, играя сама с собой и закрепляя свою способность отличать плохой ход от хорошего, но при этом ей не нужно разрабатывать какую-либо стратегию. Выполняя действия, которые профессиональные игроки считают абсурдными, машина и в этом случае доказала, что следует совершенно иному методу: она имитирует результат (результат предыдущих партий), а не процесс (поиск удачного хода). Боюсь, AlphaGo никогда не выберется из своей «китайской комнаты», даже если к ней присоединится бесконечное число клонов.
Эта глубинная асимметрия между человеческими когнитивными процессами и их информационными моделями объясняет неприязнь Каспарова к Deep Blue, его разочарование, которое заметно и спустя двадцать лет. Мы видим, что Каспаров, чтобы придать партии какой-то смысл, бессознательно пытается наделить Deep Blue лицом – это может быть команда IBM, или сидящий перед ним оператор, или некий гроссмейстер, повлиявший на программу… Каспаров отчаянно ищет человека, скрытого в механическом турке. А иначе зачем вообще играть? «Если шахматы – это военная игра, разве можно настроить себя на сражение с куском железа?» Как согласиться с тем, что ты «проиграл», если никто не выиграл? Deep Blue выявил как силу, так и ограничения всякого компьютера. Он иллюстрирует тщету самого желания устроить соревнование человеческого разума и информационных схем. Сегодня любая программа, которую можно загрузить из интернета, способна побить гроссмейстера. Но в то же время люди продолжают играть в шахматы, в том числе и при помощи компьютера, на так называемых кентаврических состязаниях. Тезис Каспарова сводится к тому, что человек и машина должны скорее дополнять друг друга, чем быть противниками. В этом не стоит видеть попытку найти психологическое утешение, скорее это глубинная эпистемологическая потребность. ИИ, как указывает и само его наименование, является искусственным средством.
Механический турок обходится сегодня без двойного дна и без системы зеркал, но все равно не может воспроизвести человеческий интеллект. Это Deep Blue и его эпигоны, строки кода, которые не могут отвлечься, но в то же время не способны придумывать истории (а потому и стратегии), которым шахматы обязаны существованием. В кратком эссе, написанном в молодости, Эдгар По задался целью доказать, что механический турок не мог быть просто машиной и что в нем наверняка скрывался человек [28] . Не ограничиваясь техническими соображениями о работе аппарата, По формулирует весьма проницательный аргумент: турок выигрывает не систематически. Тогда как «построить машину, которая выигрывает все партии, не сложнее, чем построить машину, которая выигрывает одну-единственную партию». Компьютер, который однажды победил бы чемпиона мира, не мог бы проиграть мне… как и любому другому человеку. Именно это прямо и заявляет Каспаров: «Отныне машина всегда будет обыгрывать человека в шахматы». Эта безошибочность – отличительное свойство машины. Но она же позволяет нам развивать истинно человеческий интеллект, действующий благодаря процессам, несводимым к информационной комбинаторике. Разве Эдгар По с его столь строгим умом не был автором фантастических историй?
28
Poe E. Maelzel’s Chess Player // The Southern Literary Messenger. 1836. Vol. 2. № 5.
Не благодари робота
Если ИИ действительно иллюзия, то это убедительная иллюзия. Хотел бы я на мгновение оказаться по другую сторону зеркала рациональности… Мы не думаем об электростанциях, когда зажигаем свет, и точно так же быстро забываем о строках кода, которые скрываются за работой ИИ. Нас завораживает непроницаемый взгляд турка. Мы попадаемся на уловку робота, особенно когда он наделен человеческими (или даже слишком человеческими) формами и манерами. В своих странствиях я столкнулся с несколькими такими роботами. Эти симпатичные и в то же время смущающие попутчики защищали меня, подобно античным ларам, портативным божкам, которые заботились о своих хозяевах-людях.