Вход/Регистрация
Глубокое обучение. Погружение в технологию
вернуться

Демиденко Артем

Шрифт:

Итак, многослойные нейронные сети – это ключ к решению сложных задач, и их архитектуры подобны чудесам современной технологии. Наши исследования только начались, и в следующей главе мы погрузимся еще глубже, изучая, как эти сети обучаются на практике и какие задачи они могут решать.

Тайный рецепт: прямое и обратное распространение

Прямое и обратное распространение – это два ключевых процесса, лежащих в основе обучения нейронных сетей. Давайте погрузимся глубже в этот удивительный мир и узнаем, как именно нейронные сети "учатся" из опыта.

Прямое распространение

Воображайте нейронную сеть как сложную машину, которая принимает входные данные, обрабатывает их и выдает результат. Процесс передачи данных от входа к выходу называется прямым распространением (forward propagation).

Итак, давайте посмотрим, как это работает. Представьте, что у нас есть изображение собаки, и мы хотим, чтобы наша нейронная сеть определила, является ли это изображение собакой или нет. Мы передаем это изображение в нашу нейронную сеть.

Каждый нейрон в сети связан с предыдущим слоем нейронов. Нейроны в первом слое получают пиксели изображения как входные данные. Они взвешивают эти данные (грубо говоря, они решают, насколько важен каждый пиксель) и передают результат в следующий слой. Этот процесс повторяется для каждого слоя до тех пор, пока мы не получим ответ от последнего слоя – нашу оценку того, является ли изображение собакой.

Процесс прямого распространения – это как волшебство, в котором нейронная сеть обрабатывает информацию и выдает ответ, но волшебство это, конечно же, математика и вычисления.

Обратное распространение

Теперь, когда у нас есть ответ от нашей нейронной сети, как она может учиться? Тут на сцену выходит обратное распространение (backpropagation).

Давайте представим, что наша нейронная сеть дала неправильный ответ – она сказала, что изображение собаки является изображением кошки. Обратное распространение помогает сети узнать свои ошибки и скорректировать весовые коэффициенты, чтобы она делала более точные прогнозы в будущем.

Сначала мы вычисляем, насколько сильно наша сеть ошиблась. Это называется ошибкой или потерей (loss). Затем мы используем эту ошибку, чтобы определить, как нужно корректировать весовые коэффициенты в каждом нейроне, начиная с последнего слоя и двигаясь назад к первому. Это происходит с использованием методов оптимизации, таких как градиентный спуск.

Итак, обратное распространение – это магия обучения. Она позволяет нейронной сети "учиться" на своих ошибках и становиться все более и более точной в своих прогнозах с каждой итерацией.

Активируйте ум: функции активации

Добро пожаловать в увлекательный мир функций активации – ключевого элемента нейронных сетей, который придает им способность обучаться и адаптироваться. Представьте себе функцию активации как бурые глаза нейрона, которые решают, включаться или выключаться в зависимости от входных данных. Давайте глубже погрузимся в эту тему и узнаем, как они работают.

1. Сигмоида: Плавное Переключение

Первая функция активации, о которой мы поговорим, – сигмоида. Это S-образная кривая, которая переводит входные данные в диапазон от 0 до 1. Сигмоида часто используется в задачах, где нужно предсказать вероятности, например, в задачах бинарной классификации. Но у сигмоиды есть свои недостатки: она может привести к проблеме исчезающего градиента при глубоком обучении.

2. Гиперболический Тангенс: Симметричный Сигнал

Гиперболический тангенс (tanh) – это функция активации, похожая на сигмоиду, но симметричная относительно нуля и переводящая входные данные в диапазон от -1 до 1. Это делает ее более подходящей для задач, где значения данных могут быть как положительными, так и отрицательными. Тангенс помогает справиться с проблемой исчезающего градиента в некоторых случаях, но она не всегда идеально подходит.

3. Rectified Linear Unit (ReLU): Хитрый Переключатель

Представьте себе сверхбыстрый выключатель, который включается, когда входной сигнал положителен, и выключается, когда он отрицателен. Вот как работает ReLU. Она очень проста и вычислительно эффективна, что делает ее одной из самых популярных функций активации. Однако ReLU также имеет свои недостатки – она может "умереть" и перестать активироваться при больших отрицательных значениях.

4. Leaky ReLU: Устойчивость к "Смерти"

Чтобы решить проблему "смерти" нейронов в ReLU, была создана его улучшенная версия – Leaky ReLU. Эта функция позволяет небольшому потоку информации проходить через нейрон, даже если входной сигнал отрицателен. Это делает ее более устойчивой к проблеме "смерти" и позволяет сети обучаться даже при наличии большого количества отрицательных значений.

5. ELU: Экспоненциальная Линейная Единица

Последняя в нашем списке функция активации – это экспоненциальная линейная единица (ELU). ELU сочетает в себе лучшие качества ReLU и Leaky ReLU, предоставляя высокую скорость обучения и устойчивость к "смерти" нейронов. Она также имеет положительные и отрицательные значения, что позволяет нейронам передавать разнообразные сигналы.

  • Читать дальше
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: