Вход/Регистрация
ChatGPT для саморазвития: Освоения программирования, консалтинга и изучения иностранных языков
вернуться

Михнин Алексей

Шрифт:

Результат:

Выполняем все рекомендации Чата и посмотрим смотрим что из этого получилось.

Пользователь:

Что означает Accuracy: 0.76 и Survived prediction: 0

Чат:

Accuracy: 0.76 означает, что точность вашей модели составляет 76%. Точность (accuracy) – это доля правильно классифицированных объектов от общего количества объектов. В данном случае, модель правильно предсказала выживаемость пассажиров в 76% случаев на тестовой выборке. Это одна из метрик оценки качества классификации.

Survived prediction: 0 относится к примеру с новыми данными о пассажире. Значение 0 указывает на то, что модель предсказывает, что этот пассажир не выживет в случае кораблекрушения. В данной задаче классификации значение 0 соответствует классу "не выжил", а значение 1 соответствует классу "выжил".

Пользователь:

Давайте попробуем сделать изменения в коде самостоятельно, без запросов в ChatGPT. Мы заменим значения для предсказания на свои собственные, вместо мужчины мы подставим женщину, а все остальные параметры оставим без изменений.

Результат:

Выполняем все изменения и посмотрим смотрим что из этого получилось.

Получается, что женщина с теми же параметрами выжила. Это неудивительно, учитывая тот факт, что на борту спасательных шлюпок в первую очередь спасали женщин и детей. Мы можем сделать вывод, что пол пассажира был одним из факторов, влияющих на выживаемость в данном случае.

Пользователь:

Как добиться более высокой точности модели?

Чат:

Для достижения более высокой точности модели можно выполнить следующие шаги:

Инжиниринг признаков:

Создайте новые признаки на основе существующих данных. Например, вы можете создать признак "IsAlone" (один путешествует), если количество родственников на борту (Siblings/Spouses Aboard + Parents/Children Aboard) равно нулю.

data["IsAlone"] = (data["Siblings/Spouses Aboard"] + data["Parents/Children Aboard"]).apply(lambda x: 1 if x == 0 else 0)

Отбор признаков:

Оцените значимость признаков и исключите незначимые или шумные признаки из обучения.

Оптимизация гиперпараметров:

Подберите оптимальные значения гиперпараметров модели, например, используя поиск по сетке (GridSearchCV) или случайный поиск (RandomizedSearchCV) из sklearn.

Дополнительно – рекомендации автора:

Для более полного понимания метрик машинного обучения, их разнообразия и правильного выбора в различных ситуациях, мы рекомендуем ознакомиться с книгой того же автора под названием "Оценка качества моделей машинного обучения: выбор, интерпретация и применение метрик".

Также, если вам необходимо овладеть процессом машинного обучения для табличных данных и узнать, какие вопросы стоит задавать чат-боту при обработке таких данных, мы рекомендуем прочитать книгу этого же автора "Табличное Мастерство: Осваиваем Модели Машинного Обучения для Анализа Табличных Данных". Обе книги помогут вам овладеть профессиональными навыками в области машинного обучения и эффективно применять их на практике.

Выводы

Мы успешно прошли полный процесс машинного обучения на языке Python, начиная с загрузки и предобработки данных, их визуализации, разделения на обучающую и тестовую выборки, обучения модели и тестирования ее на данных, а также объяснения результатов и возможных дальнейших шагов.

Конец ознакомительного фрагмента.

  • 1
  • 2
  • 3
  • 4
  • 5

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: