Шрифт:
Рис. 3. Распределение заряда по радиусу ШМ
Каким образом получается такое распределение заряда? Частицы в разных точках по радиусу ШМ имеют разные энергии, а значит и разные скорости. Чем больше скорость частицы в какой-то области, тем меньше время её нахождения в этой области и меньший заряд сосредоточивается в данном объёме. И наоборот, чем меньше энергия частиц в каком-то объёме, тем больший заряд сосредоточен в этом месте. Энергия электронов минимальна в центре ШМ и в интервале между точками С и D, а энергия ядер в интервале между точками А и В. Это значит, что в этих местах сосредоточены отрицательный и положительный заряды. Это показано на рис. 3. Положительный заряд в области точки Е обусловлен другими причинами, которые рассматриваются ниже. Эти заряды создают внутри ШМ электрическое поле. Распределение потенциала и напряженность этого поля представлены на рис. 4 и рис. 5.
Рис. 4. Распределение потенциала электрического поля f по радиусу шаровой молнии
Рис. 5. Распределение напряженности электрического поля по радиусу шаровой молнии
Из всех вышеприведённых графиков, можно сделать некоторые выводы. В центре сосредоточен отрицательный заряд, который хоть и меньше, примерно в два раза, положительного заряда с максимумом на сфере с точкой А, тем не менее создаёт возрастание потенциала электрического поля от центра ШМ до точки В, и если максимальная энергия ядра делённая на заряд ядра меньше разности потенциалов между точками О и В, то такое ядро не может проникнуть за точку В и покинуть пределы ШМ.
Для иллюстрации этого утверждения, рассмотрим задачу. Имеем центральный отрицательный заряд в точке О и распределенный по сфере с центром в точке О положительный заряд в два раза больший по величине. В результате на пробный, положительный заряд, помещённый на поверхность сферы, будет действовать результирующая кулоновская сила, направленная в центр сферы, т. е. влияние центрального отрицательного заряда будет больше, чем влияние положительного заряда, распределённого по сфере. Таким образом, центральный заряд удерживает около себя положительно заряженные ядра. С другой стороны, суммарный заряд внутри сферы с точкой В будет положительным. И уже этот положительный заряд не даёт электронам (т. к. они заряжены отрицательно) вылететь дальше точки Е и покинуть пределы ШМ.
Теперь рассмотрим вопрос, как частицы ШМ взаимодействуют с окружающим её атомами воздуха. На периферии ШМ находятся только электроны и чем ближе они к границе, тем меньше их энергия. Основное взаимодействие с атомами газа происходит в той области, где энергия электронов близка к тепловой энергии. Процесс взаимодействия атомов воздуха с электронами ШМ схематично показан на рис. 6.
Рис. 6. Взаимодействие электронов ШМ с атомами воздуха
Атомы воздуха взаимодействуют со встречным потоком электронов. В голубой области (рис. 6) энергия электронов приблизительно равна тепловой и взаимодействие с атомами будет упругим, т. к. энергии электрона не хватает на возбуждение электронных оболочек, а тем более на ионизацию атома. В то же время её хватает для сообщения атому импульса обратного направления. Здесь необходимо отметить, что изменение направления движения частиц в центральном потенциальном поле не приводит к уменьшению средней энергии колебаний. Существует вероятность того, что атом пройдёт эту область, попав в оранжевую область с более высокой энергией электронов (эта вероятность зависит от плотности потока электронов). В этом случае атом ионизируется, электрон переходит в состав ШМ, а ион выталкивается электрическим полем за её пределы. В итоге получаем, что внутри сферы с точкой D (рис. 2) ШМ заряжена отрицательно. Ионы будут накапливаться на сфере с точкой Е (рис. 2). Это та точка, где заканчивается влияние положительно заряженного объёма внутри сферы с точкой В (рис. 2) и сказывается общий отрицательный заряд ШМ, т. е. эти ионы можно считать частью ШМ. С учётом этого положительного заряда ШМ будет электрически нейтральной.
В результате такого взаимодействия электроны теряют небольшую часть энергии, т. к. это взаимодействие происходит в области низких энергий электронов. С другой стороны, потеря электронами энергии, уменьшает радиус ШМ. Это приводит к уменьшению поверхности ШМ и к увеличению плотности потока электронов через неё, что в свою очередь, уменьшает вероятность проникновения атомов воздуха в область электронов с высокой энергией. Таким образом, ШМ всё время старается прийти в равновесное состояние.
Теперь рассмотрим, как эта модель согласуется с описанным наблюдателями, поведением ШМ в естественных условиях.
Свечение ШМ, запах озона легко объяснить проникновением атомов и молекул воздуха в область больших энергий электронов. Вследствие этого, происходит ионизация или возбуждение электронных оболочек атомов, разрушение химических связей.
Если создались условия и ШМ потеряла устойчивость (например, столкновение с твёрдым предметом), то происходит мгновенный выброс энергии, сконцентрированной в ШМ. Это можно расценить, как взрыв. Если же ШМ потеряет всю энергию постепенно, то это будет выглядеть как будто она «растаяла» в воздухе.
Рассмотрим рис. 7, на котором показано взаимодействие ШМ с твёрдыми объектами. Если при этом взаимодействии ШМ не потеряла устойчивость, то та часть твёрдого предмета (на рис. 7 обозначена жирной линией), которая попала в область высоких энергий электронов, будет ионизирована. При этом ШМ частично будет терять энергию. Так, пролетев вдоль дерева, ШМ может оставить на нём ожоги. Тонкие предметы (листья, тряпку, палатку) она может прожечь насквозь.