Шрифт:
Раствор едкого калия (раствор гидроксида калия в воде, КОН + Н2О) сходен по свойствам с раствором едкого натра, но вызывает еще более сильные ожоги и поэтому опаснее. Кроме того, едкое кали намного дороже едкого натра, так что мы вообще обойдемся без него.
Гидроксиды щелочноземельных металлов, прежде всего, кальция и бария, трудно растворимы в воде, но полученные при этом разбавленные растворы тоже проявляют все свойства щелочей. Хотя по сравнению с едким натром они менее опасны, все же нужно учитывать их способность вызывать ожоги, а для гидроксида бария, помимо того, его токсичность, свойственную также всем солям бария (Это не относится к сульфату бария, который настолько нетоксичен, что, например, используется в медицине для приема внутрь при рентгеноскопии желудка. Безвредность этой соли обусловлена ее исключительно низкой растворимостью. — Прим. перев).
Известковую и баритовую воду мы получим в результате энергичного и продолжительного встряхивания гидроксида кальция (гашеной извести) или соответственно гидроксида бария с водой и последующего фильтрования через мелкопористый фильтр.
Гидроксид аммония (аммиачная вода, NH4OH + Н2О) представляет собой водный раствор аммиака NH3 в воде. Ион аммония NH4+, хотя он, конечно, не является простым ионом одного элемента, ведет себя подобно ионам щелочных и щелочноземельных металлов, например, образует соли. Концентрированный водный раствор аммиака, поступающий в продажу, содержит около 25 % аммиака и имеет плотность приблизительно 0,91 г/см3. На воздухе он дымит газообразным аммиаком, имеющим очень резкий запах. Аммиак с парами кислот образует белый дым. Вдыхать аммиак в больших количествах опасно для здоровья.
Мы будем хранить этот раствор аммиака в тщательно закрытой склянке с резиновой или притертой пробкой на рабочем столе, а не в шкафу с другими реактивами. Приготовим также разбавленный (5 %-ный) раствор аммиака.
ТЕХНИКА ЭКСПЕРИМЕНТА
Материалы семинара по обработке сигналов
Глава 1
Введение. Виды сигналов, сравнение цифровых и аналоговых методов обработки сигналов
Уолт Кестер
Введение
Происхождение физических сигналов и единицы их измерения
В этой книге мы будем прежде всего иметь дело с обработкой физических сигналов, выполняемой на основе аналоговых и цифровых методов. Прежде всего, рассмотрим несколько ключевых понятий и определений, необходимых для понимания сущности предмета.
Новый университетский словарь Вебстера определяет сигнал как "обнаруживаемую (или измеряемую) физическую величину или импульс (типа напряжения, силы тока или напряженности магнитного поля), которая может быть передана как сообщение или как информация". Ключом к этому определению являются слова: обнаруживаемая, физическая величина и информация.
ХАРАКТЕРИСТИКИ СИГНАЛОВ
Характеристики сигналов
? Сигналы являются физическими величинами
? Сигналы можно измерить
? Сигналы содержат информацию
? Все сигналы являются аналоговыми
Единицы измерения
? Температура: °С
? Давление: Н/м2
? Масса: кг
? Напряжение: В
? Электрический ток: А
? Мощность: Вт
Рис. 1.1
По своей природе все сигналы являются аналоговыми, будь то сигнал постоянного или переменного тока, цифровой или импульсный. Тем не менее, принято делать различие между аналоговыми и цифровыми сигналами, которое выражается в том, что в природе все измеримые физические величины представляются аналоговыми сигналами. В этой книге аналоговые сигналы характеризуются электрическими переменными, скоростью их изменения и связанной с ними энергией или мощностью. Для преобразования других физических величин (температуры, давления и т. п.) в электрические сигналы используются датчики. Такая область, как нормализация сигнала (signal conditioning), означает подготовку физических сигналов к обработке и включает в себя такие аспекты, как датчики (например, датчики температуры и давления), изолирующие и инструментальные усилители и т. д. (см. Приложение 1).
Некоторые сигналы представляют собой реакции на другие сигналы. Хороший пример — отраженный сигнал радара или ультразвуковой системы отображения, в которых отраженный сигнал является результатом действия известного переданного сигнала.
С другой стороны, существуют сигналы, которые называются цифровыми, где сигнал, определенным образом обработанный, преобразован в цифры. Возможно, эти цифровые сигналы связаны с реальными аналоговыми сигналами, но возможно, что между ними и нет связи. В качестве примера можно привести передачу данных в локальных вычислительных сетях (LAN) или в других высокоскоростных сетях.
В случае цифровой обработки сигнала (ЦОС) аналоговый сигнал преобразуется в двоичную форму устройством, которое называется аналого-цифровым преобразователем (АЦП). На выходе АЦП получается двоичное представление аналогового сигнала, которое затем обрабатывается арифметически цифровым сигнальным процессором (DSP). После обработки содержащаяся в сигнале информация может быть преобразована обратно в аналоговую форму с использованием цифро-аналогового преобразователя (ЦАП).
Другой ключевой концепцией в определении сигнала является тот факт, что сигнал всегда несет некоторую информацию. Это ведет нас к ключевой проблеме обработки физических аналоговых сигналов — проблеме извлечения информации.