Шрифт:
Реальная картина вряд ли будет настолько идиллическая, как показанная на фиг.4. Паразитную емкость Сх очень редко удается сосредоточить только в грязной земле, частично она существует и в чистой левой части. За счет этой емкости полностью избавиться от помеховых токов в чистой земле не удается.
Проиллюстрируем сказанное несколькими примерами.
Пример 1
На фиг.5 представлена схема кварцевого генератора микроконтроллера. Основу генератора составляет скоростной инвертирующий усилитель, встроенный в микроконтроллер. Режим работы по постоянному току задается встроенным высокоомным резистором, включенным между входом и выходом этого усилителя. Для корректной работы генератора дополнительно к внешнему кварцевому резонатору X1 требуются два конденсатора малой емкости, С1 и С2. Конденсаторы и земляная ножка микропроцессора подключены к внутренней земле устройства.
Точки подключения конденсаторов и микроконтроллера к земле печатной платы играют существенную роль. Малейший перекос земляных потенциалов между С1 и VSS, возникающий при прохождении НП по земле устройства, будет многократно усилен и попадет внутрь микроконтроллера как ложный короткий тактовый импульс. Поскольку длительность ложного тактового импульса намного меньше чем длительность "настоящих" тактовых импульсов, внутренняя логика микропроцессора может придти в непредсказуемое состояние. Микропроцессор "зависнет", и не всякий встроенный сторожевой таймер сможет его сбросить, так как в некоторых микроконтроллерах сторожевые таймеры тактируются от общего генератора, и сами могут "зависнуть" после воздействия такой помехи.
На фиг.6 показаны примеры разводки этого узла на печатной плате.
Фрагмент слева разведен обычным образом, в предположении что потенциалы земель во всех точках печатной платы равны. Конденсаторы С1 и С2 подключены к земле точно так же, как и все остальные элементы схемы, толщина земельных проводников выбрана большой. Такая разводка встречается часто, но, к сожалению, она не обеспечивает хорошей помехоустойчивости.
Фрагмент справа разведен таким образом, чтобы помеховый ток не протекал по дорожке, соединяющей конденсаторы С1 и С2 с земляной ножкой микроконтроллера. Эта дорожка образует участок чистой земли. Помехоустойчивость устройства с такой разводкой максимальна.
Пример 2
Вход сброса микроконтроллера является еще одной цепью, подверженной влиянию наносекундных помех. Нередко разработчики игнорируют этот очевидный факт и используют разветвленную цепь сброса, непосредственно подключенную к различным узлам на плате. Перекос земель между источником сигнала сброса (часто это супервизор питания) и микроконтроллером вызывает ложный сброс устройства.
Схемотехнически решить эту проблему нетрудно, достаточно на вход микроконтроллера добавить простую RC-цепочку, как показано на фиг.7. Однако такое решение должно сопровождаться и правильной разводкой земель, иначе никакой пользы оно не принесет.
Требования к разводке дорожки, соединяющей С3 с земляной ножкой микроконтроллера, такие же как для первого примера: никакие другие детали кроме С3 к этой дорожке подключать нельзя. Исключение составляют только конденсаторы обвязки кварца (С1 и С2 на фиг.5).
Пример 3
Обеспечить высокую помехоустойчивость устройства можно на этапе общей компоновки. Типичное устройство, при компоновке которого вопросы помехоустойчивости не были приняты во внимание, показано на фиг. 8. Для подключения внешних сигналов и питания в нем использованы все четыре кромки печатной платы. Микропроцессор расположен почти в центре печатной платы, то есть в месте максимально подверженном влиянию наносекундных помех. В случае использования сплошной земли, очень вероятно что такое устройство будет сбоить.
Не меняя компоновки, существенного улучшения помехоустойчивости в таком устройстве можно достичь, если разделить земли на чистую и грязную, как условно показано на фиг.8. Наружный контур земли является грязной землей, он специально предназначен для распространения наносекундных помех. К грязной земле нельзя подключать устройства, чувствительные к помехам.
Внутренний "полуостров" чистой земли соединен с грязной землей в одной точке. Во все сигнальные линии, проходящие между чистой и грязной землями, необходимо добавить резисторы или дроссели, чтобы преградить путь помехам (барьеры).
Дальнейшее улучшение помехоустойчивости достигается перекомпоновкой устройства, как показано на фиг.9. Видно, что все терминалы сосредоточены с одной "грязной" стороны платы. Тем самым путь распространения помех по земле платы значительно сокращен.
Барьеры
После того как внутренние земли устройства разделены на чистые и грязные, возникает вопрос — как предотвратить проникновение помех из грязной земли в чистую? Например, в устройстве фиг.4 узел 2 подключен к чистой земле, но он обменивается сигналами с узлом 3, который подвержен влиянию помех. В приведенном выше примере 3 было упомянуто, что сигнальные цепи, соединяющие узлы на чистой и грязной землях должны содержать помеховые барьеры — резисторы или дроссели. Практика показывает, что повсеместное использование барьеров обычно повышает помехоустойчивость устройства в несколько раз.
Пример 4
Рассмотрим микроконтроллер, управляющий мощной нагрузкой при помощи реле. Для управления реле используется биполярный транзистор.
Контакты реле являются источником наносекундных помех. Кроме того, внешние помехи достаточно легко проходят "сквозь" реле за счет его паразитной проходной емкости и емкостей монтажа. Вместе с тем, ни реле, ни транзистор Q1, сами по себе влиянию НП не подвержены.