Шрифт:
На прошлой лекции было рассказано о летальной рецессивной мутации у мышей. Если скрещиваются две желтых мыши, гетерозиготных по гену окраски (несут доминантный в определении цвета аллель Yellow, обознчаемый буквой Y, и рецессивный аллель белой окраски у), то появляются мыши желтые и белые. Они находятся в соотношении 2:1, а класса YY нет. Оказывается, что эмбрионы с генотипом YY есть, но они гибнут до рождения (в отношении летального эффекта аллель Y рецессивен). При этом, естественно, равновесие Харди-Вайнберга среди родившихся мышей не будет соблюдаться.
Отмечу, что для генов, которые просто оказались рядом с геном Y в хромосоме, равновесие Харди-Вайнберга тоже не будет соблюдаться. При исследовании этих генов может показаться, что сами они находятся под действием отбора, хотя они просто оказались сцеплены с тем геном, по которому жестко происходит отбор. Это явление приходится достаточно часто разбирать в генетике — какое изменение в хромосоме является причинным для наблюдаемого признака, а какое просто сцеплено с наблюдаемым признаком.
Для подавляющего большинства исследованных у человека аллелей соблюдается равновесие Харди-Вайнберга — соотношение между частотами аллелей и частотами генотипов. То есть большинство генов адаптивно нейтральны в данных условиях.
Когда мы говорим о частоте встречаемости конкретного аллеля, надо учитывать, что эта величина, которая характерна для данного места и времени. Говорить о частоте гена для человечества вообще бессмысленно. Частоты могут быть своими для каждой территории и каждой популяции, и могут различаться в десятки раз. Об этом будет рассказано в лекции 21. Частота аллеля на данной территории может меняться в результате резких изменений численности популяции, отбора или миграций. Последняя причина — наиболее частая.
Естественный и искусственный отбор
В Спарте, как известно, детей с отклонениями бросали в пропасть, чтобы население в следующих поколениях стало лучше. Но эти меры по элиминации индивидов с фенотипическими отклонениями от нормы не только аморальны, но и генетически бессмысленны. Относительная частота гетерозигот в поколениях сокращается значительно медленнее, чем частота рецессивных гомозигот. Полное устранение из популяции рецессивных гомозигот в каждом поколении не приводит к их окончательному исчезновению даже в сотом поколении, так как гетерозиготные особи являются постоянными поставщиками рецессивных гомозигот.
Иогансен в 1903 году исследовал, как будут наследоваться вариации, которые наблюдаются, в генетически однородной группе индивидов. Он взял самое маленькое и самое большое растение из самоопыляющихся бобов, получал от таких «крайних» потомство в шести поколениях, и посмотрел, что будет в шестом поколении. Оказалось, что потомство от самых мелких не отличается от потомства самых крупных ни по средней величине признака, ни по ее дисперсии.
Самоопыляющиеся растения по природе своей генетически однородны — это набор чистых линий. Изменчивость по размеру, которая проявлялась в чистых линиях, не является наследственной. Она называется модификационной изменчивостью, зависящей только от условий среды. В генетически однородной группе изменения, которые мы можем наблюдать, в том числе благоприобретенные, унаследоваться не могут. То есть отбор при отсутствии генетического разнообразия даже при наличии разнообразия внешнего, неэффективен.
Пример ненаследственной модификационной изменчивости у человека — это, например, акселерация, которая проявилась после войны в разных странах. Например, средний рост японцев стал больше на 20 см, хотя понятно, что частоты аллелей генов, и генотипов в этой популяции мало изменились за два поколения, прошедших после войны.
В генетически однородной группе индивидов отбор не эффективен (Иогансен, 1903), Различия, приобретенные в индивидуальном развитии, не наследуются
Если популяция генетически гетерогенна (потомство второго поколения, F2), то отбор по фенотипу расчленяет ее на неперекрывающиеся группы с различающимися генотипами уже за два поколения (потомство четвертого поколения F4). На рисунке это проиллюстрировано для длины венчика у табака. В одной группе велся отбор растений с длинным венчиком, в другой — с коротким. То сеть отбор при генетическом разнообразии в популяции возможен.