Шрифт:
Конференция ООН по науке и технике для развивающихся стран (1979) и эксперты Экономической и социальной комиссии по странам Азии и Тихого океана подчеркнули достоинства интегрированных сельскохозяйственных программ, использующих биогаз. Такие программы направлены на разработку пищевых культур, а также на производство белка культурами водорослей, создание рыбных ферм, переработку отходов и превращение различных отбросов в удобрения и энергию в виде метана. Надо отметить, что 38 % от 95-миллионного поголовья крупного рогатого скота в мире, 72 % остатков сахарного тростника и 95 % отходов бананов, кофе и цитрусовых приходятся на долю стран Африки, Латинской Америки, Азии и Ближнего Востока. Не удивительно, что в этих регионах сосредоточены огромные количества сырья для метанового «брожения». Следствием этого явилась ориентация некоторых стран сельскохозяйственно ориентированной экономикой на биоэнергетику. Например, одним из основных принципов энергетической политики Индии является производство биогаза в сельских районах. В конце 1979 г. в Индии работало менее 100 ООО установок. В Китае в этот же период насчитывалось 10 млн. установок. Сырьем для загрузки установок в этих странах являются отходы животноводческих ферм и птицефабрик. В Центральной Америке построены установки, работающие на отходах производства кофе. В Масатенанго была построена фабрика, выпускающая 90 м3 биогаза в сутки и 900 т органических удобрений в год из отходов кофе. Биогаз обеспечивает работу двигателя мощностью 35 л. с., являющегося частью устройства, которое лущит кофе со скоростью 3 т/ч, вырабатывает 1500 В электроэнергии и обеспечивает работу компрессора. В Израиле с 1974 г. производством биогаза занимается «Ассоциация киббуци индастриз» (KIA). Проведены фундаментальные исследования процесса метаногенеза при активном участии нескольких университетов и промышленных исследовательских институтов под эгидой министерства энергетики. Анаэробное брожение происходит при 55 °C. Исследователям удалось добиться повышения выхода биогаза до 4–6,5 м3 в сутки на каждый кубометр объема цистерны дайджестера (что в десять раз превышает обычный выход). Биогаз состоит из 62 % метана и 38 % углекислого газа; последний предполагают использовать в теплицах для ускорения фотосинтеза культивируемых растений. Отходы переработки, содержащие только 12 % твердого вещества, скармливают рыбам. Это помогло сэкономить половину гранулированных кормов из злаков, которые обычно употребляют при разведении рыб. Как показали эксперименты, богатые белками, минеральными солями и витаминами отходы крупного рогатого скота и овец можно использовать в качестве корма для скота, заменяя ими до 25 % сухого вещества поглощаемой пищи.
Производство биогаза путем метанового «брожения» отходов — одно из возможных решений энергетической проблемы в большинстве сельских районов развивающихся стран. И хотя при использовании коровьего навоза только четверть органического материала превращается в биогаз, последний выделяет тепла на 20 % больше, чем его можно получить при полном сгорании навоза.
Производство биогаза имеет следующие достоинства: это источник энергии, доступный на семейном и общинном уровне; отходы процесса служат высококачественными удобрениями и в довершение сам процесс способствует поддержанию чистоты окружающей среды. Чтобы обеспечить крупномасштабное развитие и экономическую выгоду предприятий по производству биогаза, необходимо решить целый ряд биохимических, микробиологических и социальных проблем. Усовершенствования касаются следующих областей: сокращения числа стальных элементов в используемом оборудовании; создания оборудования с оптимальной конструкцией; разработки эффективных нагревателей; нагрева дайджестеров за счет солнечной энергии; объединения систем производства биогаза с другими нетрадиционными источниками энергии; конструирования крупномасштабных производственных единиц для сельских или городских общин; оптимального использования переработанных отходов и, наконец, усовершенствования процессов брожения и начальной деградации отходов.
Биотехнология в состоянии внести крупный вклад в решение проблем энергетики посредством производства достаточно дешевого биосинтетического этанола, который кроме того является и важным сырьем для микробиологической промышленности при получении пищевых и кормовых белков, а также белково-липидных кормовых препаратов.
Источником углеводородов также могут служить водоросли. У широко распространенной зеленой водоросли Botryococcus braunii (обитающей в пресной и солоноватой воде умеренных и тропических зон) углеводороды в зависимости от условий роста и разновидностей могут составлять до 75 % сухой массы. Они накапливаются внутри клеток, и водоросли, в которых их много, плавают на поверхности. После сбора водорослей эти углеводороды легко отделить экстракцией каким-нибудь растворителем или методом деструктивной отгонки. Таким путем может быть получено вещество, аналогичное дизельному топливу и керосину.
Встречается несколько разновидностей В. braunii, отличающихся пигментацией и структурой синтезируемых углеводородов. Зеленая разновидность содержит линейные углеводороды с нечетным (25–31) числом атомов углерода, бедных двойными связями. Красная водоросль содержит углеводороды с 34–38 атомами углерода и несколькими двойными связями; это так называемые "ботриококкцены". Смысл существования двух разновидностей в настоящее время изучается. Углеводороды накапливаются в клеточной стенке, их синтез связан с метаболической активностью водоросли в фазе роста. Выход углеводородов при создании оптимальных условий культивирования может достигать 60 т/га*год для культуры водорослей, выращиваемой в толще воды в природных или искусственных условиях. Для определения перспективности использования В. braunii необходимо провести следующие исследования:
— определить условия, обеспечивающие максимальную скорость роста и образования углеводов в лабораторных и полевых условиях;
— выяснить, можно ли добиться скорости роста В. braunii, сопоставимой с известной для других водорослей;
— разработать соответствующие методы выращивания, сбора и переработки;
— оценить применимость получаемого продукта как альтернативного источника топлива и смазочных веществ. Исследования, связанные с выделением и возможностью утилизации углеводородов В. braunii, могут также способствовать лучшему пониманию вопроса о происхождении нефти.
Биотехнология обработки стоков и контроль загрязнения воды тяжелыми металлами
Развитие промышленности ведет к образованию большого количества отходов, в том числе отходов, содержащих новые антропогенные компоненты. Методами биотехнологии эти отходы могут быть переработаны в полезные или безвредные продукты.
Бытовые отходы делятся на 2 группы: твердые отходы и сточные воды.
Твердые бытовые отходы состоят из целлюлозосодержащих материалов (до 40 % бумаги, 2.5 % дерева, 8 % текстиля) и пищевых отходов (40 %). Наиболее экономична и радикальна переработка их метановым брожением, в результате образуется легко транспортируемое топливо — метан.
Сточные воды обычно содержат сложную смесь нерастворимых и растворимых компонентов различной природы и концентрации. Бытовые отходы, как правило, содержат почвенную и кишечную микрофлору, включая патогенные микроорганизмы.
Сточные воды сахарных, крахмальных, пивных и дрожжевых заводов, мясокомбинатов содержат в больших количествах углеводы, белки и жиры, являющиеся источниками питательных веществ и энергии.
Стоки химических и металлургических производств могут содержать значительное количество токсических и даже взрывчатых веществ. Серьезное загрязнение возникает при попадании в окружающую среду соединений тяжелых металлов, таких как железо, медь, олово и др.
Цель очистки сточных вод — удаление растворимых и нерастворимых компонентов, элиминирование патогенных микроорганизмов и проведение детоксикации таким образом, чтобы компоненты стоков не вредили человеку, не загрязняли водоемы. Бактерии рода Pseudomonas практически всеядны. Например, P. putida могут утилизировать нафталин, толуол, алканы, камфару и др. соединения. Выделены чистые культуры микроорганизмов, способные разлагать специфические фенольные соединения, компоненты нефти в загрязненных водах и т. д. Микроорганизмы рода Pseudomonas могут утилизировать и необычные химические соединения — инсектициды, гербициды и другие ксенобиотики. Генетически сконструированные штаммы микроорганизмов в будущем смогут решить проблему очистки сточных вод и почв, загрязненных пестицидами и другими антропогенными веществами.