Шрифт:
Глава 5. Нечто по-настоящему большое
Откройте банку консервированного супа обычных размеров и опорожните ее в глубокую чашу. Повторите процедуру один-два раза. Порция органической похлебки, которая окажется перед вами, будет примерно равна по объему всем бактериям, обитающим в вашей толстой кишке.
Факт неновый, но он постоянно всплывает у меня в сознании, когда я пытаюсь как-то осмыслить микробиом. Микробы – существа маленькие и незаметные. Они только рады вести незаметное существование. Приличных размером колония бактерий может жить на пятнышке, точечке, завитке, тонкой пленке жизни. Легко забыть о том, что при своем стремительном размножении бактерии способны быстро набрать значительную общую массу, едва им представится такая возможность. Сегодня существуют промышленные ферментационные установки, производящие микроорганизмы миллионами литров.
Современные микробиомные исследования позволяют яснее осознать, что у человеческого тела имеется множество экологических ниш для других организмов. Однако в основном они так и остаются утешительно-миниатюрными как по размерам, так и по общему объему. С кишечником дело обстоит иначе. Если собрать все микробы из других участков тела в одну пробу, она займет меньше чайной ложки. А вот для микробов из моего пищеварительного тракта понадобится большой черпак.
Уже сама их совокупная масса подразумевает, что кишечный микробиом вполне можно представить себе как отдельный орган, причем весьма важный: по метаболической активности он не уступает печени. Но орган это необычный. Он состоит из клеток, предки которых обитали в самых разных местах. От значительной части этих клеток организм ежедневно избавляется. Могу ли я предположить, что данный орган, подобно другим, блюдет мои интересы? (Во всяком случае, касательно других органов вполне естественно сделать такое предположение.) И чем он, собственно, вообще занимается?
В совокупный микробиом человека входят и другие участки тела, где живут свои виды микробов, играющие свою роль. Но, судя по всему, важнее всего разобраться именно в микробиоме кишечника, особенно в микробиоме толстой кишки. Процессы, которые там происходят, влекут за собой далеко идущие последствия. В ближайших трех главках – о том, что ученым удалось выяснить.
Спускаясь в люк
Очевидный способ попасть в кишечник – через рот. Но бактерия, которая хочет присоединиться к кишечному микробиому, должна проделать долгий путь. И она может очутиться в самых разных местах.
Желудочно-кишечный тракт человека – единая система, но в ней можно выделить несколько областей, существенно отличающихся друг от друга. Три основные – желудок, тонкий кишечник (уложенный в брюшной полости) и толстый кишечник, или толстая кишка. Если представить все это как одну прямую трубку, ее общая длина (для взрослого) составит целых 7 м.
Проследим за маршрутом потребляемой еды. Рот богат микробами, однако содержимое желудка (смесь измельченной пищи, слюны и высококислотных выделений, помогающих расщеплять поступающие с пищей белки) поддерживает существование лишь десяти микробных клеток на грамм. Далее количество бактерий стремительно возрастает. К тому времени как мы достигнем двенадцатиперстной кишки, первой части тонкого кишечника (как мы знаем, он довольно длинный), плотность микробного населения составит уже 1000 организмов на грамм; при движении по тонкому кишечнику нас ждет рост этой величины еще в 10 тысяч раз: последний участок тонкого кишечника содержит 10 миллионов микробных клеток на грамм. Однако самый большой количественный скачок происходит между тонким и толстым кишечником. Толстую кишку, последнюю из основных частей нашего кишечника, когда-то считали довольно примитивной трубкой, где реабсорбируется жидкость из материала, который вот-вот превратится в фекалии. Однако именно здесь кормится несусветное количество микробов – миллион миллионов (1012) на грамм.
Вся эта живность обитает в зоне, чье сложное устройство, сформировавшееся в ходе эволюции, само являет собой микроскопическое чудо. Как толстый, так и тонкий кишечник выполняет две работы, требования к которым противоречивы. В отличие от кожи, на которой спокойно резвятся микробы, поверхность кишечника не может действовать просто как барьер. Все малые молекулы, производимые при переваривании пищи (главное занятие этого органа), должны абсорбироваться в кровь, чтобы их можно было использовать там, где они требуются. А значит, кишечник должен обладать не слишком толстой оболочкой и как можно большей поверхностью. Толщину оболочки легко оценить: для эпителия, внутреннего поверхностного слоя кишечника, она составляет около 10 микрон – примерно вдесятеро больше размера типичной бактерии. Площадь оценить труднее, поскольку кишечник имеет весьма извилистую форму. Если бы стенка кишечника (упомянутый нами тонкий слой) была плоской, она заняла бы меньше квадратного метра. Но она неплоская. Бесчисленные мелкие отростки (ворсинки) высовываются во внутреннее пространство кишечника – его полость. Каждая из этих ворсинок питает одноклеточной толщины слой эпителия. Но у клеток тоже есть внешний слой, едва различимый при помощи оптического микроскопа и кажущийся чуть щетинистым. Называется он щеточной каймой. Электронный микроскоп покажет вам, что она в свою очередь состоит из микроворсинок, усеивающих ту сторону клеточной мембраны, что обращена в сторону полости.
Подсчитать общую площадь всего этого – то же самое, что попытаться оценить общую поверхность самого пушистого из ваших банных полотенец. Анатомы сходятся во мнении, что этот показатель составляет от 200 до 250 м2 (что сравнимо с размером теннисного корта). Возможно, это и не очень точная оценка, однако все равно понятно, так сказать, на какой площадке идет игра. Ясно одно: мы имеем дело с большой цифрой.
И это хорошо. Кишечнику (как и легким с их мелко разветвленными альвеолами, предназначенными для газообмена) для проведения эффективного молекулярного переноса необходима большая территория. Но здесь мы сталкиваемся с другим требованием. Кишечник полон не только пищи, но и бактерий, а нам не хочется, чтобы бактерии попадали в кровь. Мы привыкли считать кожу главным препятствием на пути бактерий, которые пытаются глубже проникнуть в наши ткани, и она действительно выполняет немаловажную барьерную роль. Но кишечник куда больше по общей площади, и ему приходится иметь дело с куда более значительным количеством бактерий в течение куда более значительного времени. Как он с этим справляется?
Свой барьер тут тоже, конечно, имеется. Эпителий, как и все биологически активные пограничные слои, осуществляет молекулярный перенос, при этом преграждая путь более крупным объектам, вроде микробных клеток. Соседствующие эпителиальные клетки объединены белковой сетью в тесную структуру наподобие той, что используют многоклеточные (так называемое «плотное соединение»). Она также помогает задерживать нежелательных гостей.
Однако для полного ответа на вопрос следует вспомнить об иммунной системе. Поскольку кишечник – центр метаболизма и основная часть нашего микробиома, он является к тому же самым крупным участком действия всех молекулярных и клеточных объектов, обеспечивающих иммунитет. Присутствие в кишечнике триллионов бактерий, вероятно, является главной движущей силой развития иммунитета как в эволюционном масштабе, так и у каждого конкретного человека. Это влияние мы лишь сейчас начинаем осознавать. Подробнее о том, как оно меняет наши представления о живом, читайте в главе 7.
А пока давайте рассмотрим микробное содержимое самого плотно заселенного региона – толстой кишки. Здесь находится наиболее сложная микробная экосистема нашего тела, а по клеточному разнообразию и по количеству клеток на единицу объема – возможно, и вообще самая сложная экосистема в мире. Ей посвящена основная часть обзоров, где дается количественная оценка наших микробов и их генов. И чем больше людей обследуют ученые, тем большее разнообразие выявляется. Первый опубликованный каталог микробных генов, составленный на основе данных по 124 добровольцам, содержит 3,3 миллиона генов кишечника. Самый же новый [54] , объединяющий результаты обследования примерно 1300 жителей Америки, Европы и Азии, доводит это количество до десятка миллионов.
54
Karlson, 2014.