Шрифт:
Мы считаем законы природы пространственно универсальными и не зависящими от времени. Их повсеместность и, возможно, вечная неизменность означает, что любой закон природы считается справедливым не только в стенах лаборатории, но и на всех континентах, и дальше, за их пределами, во всей Вселенной. Может быть, эти законы перестают действовать в областях, к которым не приложимы концепции пространства и времени, например внутри черных дыр, – но там, где пространство и время к ним благосклонны, законы, верные здесь и сейчас, будут верны везде и всегда.
Законы устанавливаются в лабораториях, занимающих несколько кубометров, но считаются применимыми ко всей Вселенной. На выработку их формулировок уходит время, сравнимое с продолжительностью человеческой жизни, но мы уверены, что они действуют на промежутках времени, примерно равных вечности. Для такой уверенности есть кое-какие основания – и все же надо проявлять некоторую осторожность и не отдаваться им совсем уж беззаветно.
На микроскопически малых масштабах непосредственного человеческого опыта, за крохотную часть времени существования Вселенной и в исчезающе маленькой доле ее объема законы природы оказываются неизменными, где бы и когда бы мы их ни проверяли, – по крайней мере, в пределах Земли. На масштабах, превышающих границы человеческого опыта, эти законы проверяются благодаря способности астрономов наблюдать явления на громадных расстояниях от Земли, в других галактиках и соответственно в глубоком прошлом. Если только на огромных расстояниях в пространстве и во времени отклонения от законов каким-то загадочным образом не компенсируют друг друга ровно настолько, чтобы сбить нас с толку, мы можем сказать, что никаких отклонений от установленных на Земле законов во Вселенной не зарегистрировано. И раз этого не происходило за те краткие миллиарды лет, что остались в прошлом, нет никаких причин подозревать, что ныне действующие законы изменятся и за похожее время в будущем. Конечно, вполне может случиться, что в течение следующих нескольких триллионов лет, – а может, и завтра в полночь – ныне скрытые от нас измерения пространства-времени, которые, как некоторые подозревают, таятся в его глубинах, вдруг развернутся, объединившись с горсточкой привычных нам измерений, и изменят избитую реальность нашего мира до полной неузнаваемости. Этого мы не знаем. Но в один прекрасный день – такова сила законов природы – мы, возможно, сможем это предсказать на основе тех законов, которые выводим сегодня. Ибо законы природы несут в себе и зародыш своей отмены.
Почти все – но не все – законы представляют собой приближения, даже когда они касаются сущностей, изолированных от внешних и случайных воздействий (той самой грязи). Позвольте указать здесь на одну историческую фигуру и на первый из ряда малых и простых законов, которые я буду использовать, чтобы иллюстрировать свои мысли. (Позже я укажу на различие между «большими» и «малыми» законами; этот закон относится к числу малых.) Роберт Гук (1635–1703), очень умный, изобретательный и трудолюбивый ученый, предложил закон, относящийся к растяжению пружин [3] . Как было принято в те времена, он записал свой закон в виде анаграммы – это делалось, чтобы «застолбить» свой приоритет, но при этом выиграть время на изучение следствий из сделанного открытия, не опасаясь, что тебя кто-то обгонит и опубликует тот же результат раньше. И вот в 1660 году Гук опубликовал загадочную шифровку ceiiinosssttuv – как впоследствии оказалось, она значила Ut tensio, sic vis [4] . На более прямом языке сегодняшнего дня закон Гука утверждает, что возвращающая сила (сила упругости), возникающая в пружине, пропорциональна тому, на сколько линейных единиц эта пружина растянута или сжата. Закон очень хорошо описывает поведение не только реальных пружин, но и действующих по тому же принципу связей между атомами и молекулами; у него оказалось несколько удивительных следствий, о которых совершенно не подозревали ни сам Гук, ни даже его современник Ньютон. И однако же этот закон является всего лишь приближением, – если пружину растянуть на очень большое расстояние, пропорциональность между силой и растяжением нарушится, даже если вы остановитесь прежде, чем пружина лопнет: ceiiinnnoosssttuv. Тем не менее, если не забывать о том, что закон Гука работает только для малых растяжений, он вполне адекватен.
3
Согласно закону Гука, F = —kfx, где F – возвращающая сила, x – смещение от точки равновесия («пружина в состоянии покоя») и kf – характеристика пружины: постоянная взаимодействия, или жесткость. У жесткой пружины эта постоянная велика. Больше об этом в главе 6.
4
В переводе с латинского – «каково растяжение, такова и сила», т. е. «растяжение пружины пропорционально приложенной силе». (Прим. перев.)
Но законы могут быть и точными. Например закон сохранения энергии, который состоит в том, что энергия не может быть создана или уничтожена: она может только переходить из одной формы в другую, но общее количество энергии, которое есть у нас на сегодняшний день, останется таким же навеки и всегда было таким в прошлом. Этот закон имеет такую силу, что на его основании можно совершать открытия. В 1920-х было замечено, что при ядерном распаде определенного вида энергия как будто не сохраняется. И так как явление было совершенно новым и неизученным, появилось предположение, что это и вправду так. Альтернативная точка зрения, предложенная в 1930 году австрийским физиком-теоретиком Вольфгангом Паули (1900–1958), заключалась в том, что энергия сохраняется, но часть ее уносится пока неизвестными частицами. Это предположение стимулировало поиски таких частиц, и в итоге была зарегистрирована новая элементарная частица – нейтрино. Как мы еще увидим, закон сохранения энергии глубочайшим образом связан с самим фактом познаваемости Вселенной – в нем коренится принцип причинности, сама идея, что одно событие может быть причиной другого. Потому этот закон, по сути, лежит в основе всех объяснений. Для нашего последующего повествования он будет значить очень много.
Есть много других законов, которые выглядят похожими по статусу на закон Гука (то есть являются приблизительными и приносят большую практическую пользу, помогая нам делать предсказания и понимать поведение материальных тел). Много и таких, которые напоминают закон сохранения энергии (не являются приблизительными, но глубоко связаны со структурой объяснения и понимания). Это подсказывает мне, что можно разделить все законы на два класса, которые я назову внутренними и внешними («внезаконами»). Внутренние законы – это очень глубокие структурные закономерности Вселенной. Они – ее первичное законодательство, фундамент ее понимания, ее краеугольный камень. Закон сохранения энергии – по моему убеждению, внутренний закон, и, хоть я говорю это не без колебаний, он, возможно, порождает все остальные внутренние законы. Внешние законы – «внезаконы», такие как закон Гука и другие, с которыми мы вскоре познакомимся, – младшие родственники внутренних. Это подзаконные «нормативные акты», лишь немногим отличающиеся от простых уточнений внутренних законов. Мы не можем обойтись без них, и во многих случаях именно их открытие, применение и интерпретация двигают вперед науку. Но они лишь капралы армии, во главе которой стоят полководцы.
Мне надо привлечь ваше внимание к одной особенной разновидности законов: к законам, которые совершенно ни к чему не применимы и все-таки очень полезны. Это маловразумительное высказывание надо объяснить. Как я уже сказал, «внезаконы» обычно являются приближенными. Однако в некоторых случаях это приближение становится все точнее и точнее по мере того, как материала, для описания которого этот закон предназначен, остается все меньше и меньше. Если мы доведем эту уменьшающуюся прогрессию до ее предела, мы увидим, что закон сделался практически точным (а возможно, и идеально точным), когда количество описываемого им материала обратилось в нуль. Здесь мы имеем дело с так называемым предельным законом – он достигает полной точности в пределе, в котором описывать уже нечего.
В том виде, в каком я это представил, получается, будто такой закон не имеет смысла, – он применим только при отсутствии своего предмета. Но вы скоро убедитесь, что «предельные законы» имеют огромную ценность – они как бы помогают соскрести «грязь» с деталей своего собственного механизма. Я на примере поясню, что имею в виду.
Около 1660 года в своей мастерской-лаборатории неподалеку от оксфордской Хай-стрит (там, где теперь находится Университетский колледж, но, может быть, и на нынешней территории моего собственного Линкольн-колледжа) англо-ирландский аристократ Роберт Бойль (1627–1691) занимался исследованиями «упругости воздуха» – его сопротивления сжатию. К этому его, возможно, подтолкнули предложения его усердного ассистента Ричарда Таунли и сотрудничество с уже упоминавшимся здесь вездесущим и всезнающим Робертом Гуком. Бойль установил закон природы, по-видимому, управлявший поведением газа, известного нам как воздух [5] . А именно, он обнаружил, что для данного количества воздуха произведение создаваемого этим воздухом давления на занимаемый им объем постоянно. Увеличим давление воздуха – объем уменьшится, но произведение давления на объем останется тем же, что и было. Снова увеличим давление – и снова та же история, объем уменьшается, произведение сохраняется. Таким образом, закон Бойля (который французы называют законом Мариотта) состоит в том, что произведение давления газа на его объем для данного количества газа всегда постоянно. Сейчас мы бы еще добавили, что при этом температура газа тоже должна быть постоянной.
5
Одна из форм закона Бойля – закон Бойля при постоянной температуре, V ?1/p, где V – объем, занимаемый газом при давлении p. Из него следует, что произведение pV постоянно для данного количества газа при постоянной температуре. Больше об этом в главе 6.
Закон этот, на практике, приближенный. Добавьте еще газа, и он будет выполняться хуже. Откачайте часть газа, и соответствие закону улучшится. Откачайте еще, и дела пойдут еще лучше. Откачайте почти весь газ – теперь закон выполняется почти идеально. Вы поняли, к чему я веду: откачайте все до конца, и закон станет точным. Таким образом, закон Бойля есть «предельный закон», точно выполняющийся, когда газа настолько мало, что его, можно считать, нет вообще.
В этой связи я должен отметить две вещи. Во-первых, мы теперь, в отличие от Бойля, понимаем, почему точность выполнения закона увеличивается при уменьшении количества вещества. Бойль и не мог этого понимать: он еще не знал о существовании молекул. Не стану углубляться в подробности, но по сути отклонения от точного выполнения закона Бойля обусловлены взаимодействиями между молекулами. Когда количество газа невелико и его молекулы далеко друг от друга, взаимодействиями между ними можно пренебречь – они движутся хаотически и независимо друг от друга (кстати, слова «хаос» и «газ» этимологически родственны – происходят от одного и того же греческого корня). Эти взаимодействия и есть внутренняя «грязь», которую устраняет уменьшение количества вещества и которая мешает увидеть чистый идеал хаоса.