Шрифт:
Bok, M. J., et al. (2014) Biological sunscreens tune polychromatic ultraviolet vision in mantis shrimp, Current Biology, 24(14), 1636–1642.
Bok, M. J., Capa, M., and Nilsson, D.-E. (2016) Here, there and everywhere: The radiolar eyes of fan worms (Annelida, Sabellidae), Integrative and Comparative Biology, 56(5), 784–795.
Boles, L. C., and Lohmann, K. J. (2003) True navigation and magnetic maps in spiny lobsters, Nature, 421(6918), 60–63.
Bonadonna, F., et al. (2006) Evidence that blue petrel, Halobaena caerulea, fledglings can detect and orient to dimethyl sulfide, Journal of Experimental Biology, 209(11), 2165–2169.
Boonman, A., et al. (2013) It's not black or white: On the range of vision and echolocation in echolocating bats, Frontiers in Physiology, 4, 248.
Boonman, A., Bumrungsri, S., and Yovel, Y. (2014) Nonecholocating fruit bats produce biosonar clicks with their wings, Current Biology, 24(24), 2962–2967.
Bostrom, J. E., et al. (2016) Ultra-rapid vision in birds, PLOS One, 11(3), e0151099.
Bottesch, M., et al. (2016) A magnetic compass that might help coral reef fish larvae return to their natal reef, Current Biology, 26(24), R1266–R1267.
Braithwaite, V. (2010) Do fish feel pain? New York: Oxford University Press.
Braithwaite, V., and Droege, P. (2016) Why human pain can't tell us whether fish feel pain, Animal Sentience, 3(3).
Braude, S., et al. (2021) Surprisingly long survival of premature conclusions about naked mole-rat biology, Biological Reviews, 96(2), 376–393.
Brill, R. L., et al. (1992) Target detection, shape discrimination, and signal characteristics of an echolocating false killer whale (Pseudorca crassidens), Journal of the Acoustical Society of America, 92(3), 1324–1330.
Brinkl?v, S., Elemans, C. P. H., and Ratcliffe, J. M. (2017) Oilbirds produce echolocation signals beyond their best hearing range and adjust signal design to natural light conditions, Royal Society Open Science, 4(5), 170255.
Brinkl?v, S., Fenton, M. B., and Ratcliffe, J. M. (2013) Echolocation in oilbirds and swiftlets, Frontiers in Physiology, 4, 123.
Brinkl?v, S., Kalko, E. K. V., and Surlykke, A. (2009) Intense echolocation calls from two "whispering" bats, Artibeus jamaicensis and Macrophyllum macrophyllum (Phyllostomidae), Journal of Experimental Biology, 212(Pt 1), 11–20.
Brinkl?v, S., and Warrant, E. (2017) Oilbirds, Current Biology, 27(21), R1145–R1147.
Briscoe, A. D., et al. (2010) Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies, Proceedings of the National Academy of Sciences, 107(8), 3628–3633.
Broom, D. (2001) Evolution of pain, Vlaams Diergeneeskundig Tijdschrift, 70, 17–21.
Brothers, J. R., and Lohmann, K. J. (2018) Evidence that magnetic navigation and geomagnetic imprinting shape spatial genetic variation in sea turtles, Current Biology, 28(8), 1325–1329.e2.
Brown, F. A. (1962) Responses of the planarian, dugesia, and the protozoan, paramecium, to very weak horizontal magnetic fields, Biological Bulletin, 123(2), 264–281.
Brown, F. A., Webb, H. M., and Barnwell, F. H. (1964) A compass directional phenomenon in mud-snails and its relation to magnetism, Biological Bulletin, 127(2), 206–220.
Brown, R. E., and Fedde, M. R. (1993) Airflow sensors in the avian wing, Journal of Experimental Biology, 179(1), 13–30.
Brownell, P., and Farley, R. D. (1979a) Detection of vibrations in sand by tarsal sense organs of the nocturnal scorpion, Paruroctonus mesaensis, Journal of Comparative Physiology A, 131(1), 23–30.
Brownell, P., and Farley, R. D. (1979b) Orientation to vibrations in sand by the nocturnal scorpion, Paruroctonus mesaensis: Mechanism of target localization, Journal of Comparative Physiology A, 131(1), 31–38.
Brownell, P., and Farley, R. D. (1979c) Prey-localizing behaviour of the nocturnal desert scorpion, Paruroctonus mesaensis: Orientation to substrate vibrations, Animal Behaviour, 27(Pt 1), 185–193.