Шрифт:
Elwood, R. W., and Appel, M. (2009) Pain experience in hermit crabs? Animal Behaviour, 77(5), 1243–1246.
Embar, K., et al. (2018) Pit fights: Predators in evolutionarily independent communities, Journal of Mammalogy, 99(5), 1183–1188.
Emerling, C. A., and Springer, M. S. (2015) Genomic evidence for rod monochromacy in sloths and armadillos suggests early subterranean history for Xenarthra, Proceedings of the Royal Society B: Biological Sciences, 282(1800), 20142192.
Engels, S., et al. (2012) Night-migratory songbirds possess a magnetic compass in both eyes, PLOS One, 7(9), e43271.
Engels, S., et al. (2014) Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird, Nature, 509(7500), 353–356.
Erbe, C., et al. (2019) The effects of ship noise on marine mammals – A review, Frontiers in Marine Science, 6, 606.
Erbe, C., Dunlop, R., and Dolman, S. (2018) Effects of noise on marine mammals, in Slabbekoorn, H., et al. (eds), Effects of anthropogenic noise on animals, 277–309. New York: Springer.
Eriksson, A., et al. (2012) Exploitation of insect vibrational signals reveals a new method of pest management, PLOS One, 7(3), e32954.
Etheredge, J. A., et al. (1999) Monarch butterflies (Danaus plexippus L.) use a magnetic compass for navigation, Proceedings of the National Academy of Sciences, 96(24), 13845–13846.
European Parliament, Council of the European Union (2010) Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes: Text with EEA relevance, L 276(20.10.2010), 33–79.
Evans, J. E., et al. (2012) Short-term physiological and behavioural effects of high-versus low-frequency fluorescent light on captive birds, Animal Behaviour, 83(1), 25–33.
Falchi, F., et al. (2016) The new world atlas of artificial night sky brightness, Science Advances, 2(6), e1600377.
Fedigan, L. M., et al. (2014) The heterozygote superiority hypothesis for polymorphic color vision is not supported by long-term fitness data from wild neotropical monkeys, PLOS One, 9(1), e84872.
Feller, K. D., et al. (2021) Surf and turf vision: Patterns and predictors of visual acuity in compound eye evolution, Arthropod Structure & Development, 60, 101002.
Fenton, M. B., et al. (eds), (2016) Bat bioacoustics. New York: Springer.
Fenton, M. B., Faure, P. A., and Ratcliffe, J. M. (2012) Evolution of high duty cycle echolocation in bats, Journal of Experimental Biology, 215(17), 2935–2944.
Fertin, A., and Casas, J. (2007) Orientation towards prey in antlions: Efficient use of wave propagation in sand, Journal of Experimental Biology, 210(19), 3337–3343.
Feynman, R. (1964) The Feynman Lectures on Physics, vol. II, ch. 9, Electricity in the Atmosphere. Available at: www.feynmanlectures.caltech.edu/II_09.html.
Finger, S., and Piccolino, M. (2011) The shocking history of electric fishes: From ancient epochs to the birth of modern neurophysiology. New York: Oxford University Press.
Finkbeiner, S. D., et al. (2017) Ultraviolet and yellow reflectance but not fluorescence is important for visual discrimination of conspecifics by Heliconius erato, Journal of Experimental Biology, 220(7), 1267–1276.
Finneran, J. J. (2013) Dolphin "packet" use during long-range echolocation tasks, Journal of the Acoustical Society of America, 133(3), 1796–1810.
Firestein, S. (2005) A Nobel nose: The 2004 Nobel Prize in Physiology and Medicine, Neuron, 45(3), 333–338.
Fishbein, A. R., et al. (2020) Sound sequences in birdsong: How much do birds really care? Philosophical Transactions of the Royal Society B: Biological Sciences, 375(1789), 20190044.
Fleissner, G., et al. (2003) Ultrastructural analysis of a putative magnetoreceptor in the beak of homing pigeons, Journal of Comparative Neurology, 458(4), 350–360.
Fleissner, G., et al. (2007) A novel concept of Fe-mineral-based magnetoreception: Histological and physicochemical data from the upper beak of homing pigeons, Naturwissenschaften, 94(8), 631–642.
Forbes, A. A., et al. (2018) Quantifying the unquantifiable: Why Hymenoptera, not Coleoptera, is the most speciose animal order, BMC Ecology, 18(1), 21.