Шрифт:
А вот GPT-3, 4, 5… – это номера конкретных версий моделей компании, где каждая следующая опережает предыдущую по целому ряду показателей.
В этой книге мы будем оперировать словами ChatGPT, «ИИ», «нейросеть», «модель» и т. п., имея в виду в первую очередь GPT от OpenAI. Просто потому, что на момент написания книги это явный лидер, который задает тон.
Но вообще мы создаем книгу универсального промтинга, не привязываясь к конкретному номеру модели и даже к конкретной LLM (что такое промтинг, мы расскажем чуть позже). Самый смак в том, что эти правила одинаковы для всех аналогичных LLM, поэтому подойдут и для других моделей. Почему – об этом еще поговорим, а пока продолжим.
Линейка моделей GPT сегодня опережает другие похожие решения. В OpenAI и начали раньше, и денег, видимо, хватало, и люди там талантливые. Словом, лидеры.
ChatGPT [1] постоянно развивается, всегда на несколько шагов впереди. Пока другие LLM доходят до его вчерашнего уровня, он уже машет рукой из завтрашнего дня.
Общение человека с ChatGPT ведется с помощью текстовых запросов (prompts), которые мы далее будем называть промтами или подсказками.
1
Далее для единообразия мы будем обращатьcя к ИИ (GPT, ChatGPT) в мужском роде.
Суть работы модели выглядит так: человек вводит промт и получает ответ. Главное ее отличие от работы обычных программ в том, что GPT способна создавать ответы в таком виде, как если бы их давал человек.
Например, зададим ChatGPT задачу для пятого класса:
Ответ модели, по сути, идентичен ходу мыслей обычного школьника (скопировано дословно).
Для решения этой задачи нужно проследить изменение количества пассажиров в автобусе на каждой остановке.
Изначально в автобусе было 24 пассажира. После первой остановки вышло 6 пассажиров, а вошло 11. Таким образом, количество пассажиров увеличилось на 11 – 6 = 5.
24 + 5 = 29 пассажиров после первой остановки.
На следующей остановке вышло 8 пассажиров, а вошло 9. Снова посчитаем изменение количества пассажиров:
29 – 8 + 9 = 30 пассажиров после второй остановки.
Итак, после обеих остановок в автобусе стало 30 пассажиров.
Еще год-полтора назад GPT так не умела, а сегодня – запросто. Это происходит благодаря глубокому машинному обучению – непрерывному процессу, в который входит и обучение моделей новым закономерностям, и расширение нейронных связей за счет увеличения программных мощностей, и колоссальная обратная связь с пользователями.
Чем больше мы общаемся с ChatGPT и чем больше реагируем, давая модели обратную связь, тем больше информации она получает и тем быстрее учится. Возникает тот самый эффект снежного кома.
«Выходит, нейросеть действительно умнеет и становится похожей на человека?» – спросите вы.
Честно – не знаем. Мы изучили массу докладов и лекций как ведущих ученых, IT-специалистов и разработчиков ИИ, так и нейропсихологов, нейрофизиологов и даже социологов. Среди экспертов нет единого мнения, поэтому вопрос остается открытым.
Мы приведем парочку фактов, а вы поразмышляйте и попробуйте сами сделать выводы.
Факт первый. Мы имеем дело уже не с программой, а с чем-то обладающим основами логики и анализа. И дальше навыки ИИ будут только расти. Все это видно по уже существующему прогрессу.
Факт второй. В техническом смысле нейросеть и не должна ничего «понимать» как человек. То есть ей для этого не нужны какие-то личностные или эмоциональные черты.
Почему? Потому что при глубоком машинном обучении сеть и не должна «очеловечиваться», она лишь ищет закономерности, закрепляет успешно подтвержденные и тем самым изучает, как работает человеческий язык. Для выполнения своих задач ей этого хватает.
Предполагается, что она лишь изучает вероятности и старается делать максимально «очеловеченный» вывод на основе наших данных. Например, что в такой-то связке слов и смыслов стоит употребить такие-то слова и смыслы и это даст лучшие результаты. Когда такое подтверждается много-много раз, сеть закрепляет это для себя как факт и делает частью стратегии.
Чтобы понять еще лучше, возьмем простой пример.
Есть некий Сергей Сергеевич, преподаватель истории в вузе. Раньше, рассказывая о временах Ивана Грозного (о которых он знает очень много), Сергей Сергеевич начинал издалека: давал предпосылки, углублялся во второстепенное, долго подводил к сути и т. д.
Со временем он заметил, что такая стратегия не работает. Пока он «раскачивал тему», большинство студентов теряли интерес. Да, кое-кто слушал, но 95 % – зевали.
Тогда Сергей Сергеевич начал корректировать свои лекции. Он отмечал, какой материал студенты понимают, а какой – не очень, к чему они быстро проявляют интерес, а где начинают смотреть на часы. И вот так, шажками, он создал конструкцию лекции, которая и по объему, и по уровню знаний была интересна большинству.