Шрифт:
Несколько слов о задачах, которые были даны раньше.
Задачу 10 об окраске древесины вы, вероятно, решили легко: надо окрашивать дерево до того, как оно срублено. Раствор краски подают к корням, и краска, вместе с соками, разносится по всему дереву. Нетрудно решить и задачу 12 об обработке тонких листов стекла: на время обработки их складывают вместе, в толстую пачку. В задаче 14 о самолете, потерпевшем аварию, есть подсказка: дирижабль надо использовать и дирижабль не надо использовать. Под крыльями самолета, потерпевшего аварию, укладывают продолговатые эластичные баллоны и наполняют их сжатым воздухом. Баллоны осторожно приподнимают самолет. А внизу, под баллонами, установлены тележки; можно буксировать самолет. Дирижабля нет и он как бы есть; самолет поддерживается баллонами с газом.
Задачу 18 о катамаране нетрудно решить, если вы вспомните, что технические системы на третьем этапе развития становятся перестраивающимися, динамичными, меняющимися. Изобретатель Е. И. Лапин получил авторское свидетельство № 524 728 на катамаран, корпуса которого соединены подвижными стойками и могут при необходимости сближаться. На таком катамаране легче проходить узкие речные шлюзы.
Сходное решение и у задачи 21 о земснаряде. Трубопровод должен стать динамичным, подвижным. В хорошую погоду он будет держаться наверху, у понтонов. А в плохую — опустится вниз. На поверхности останутся только понтоны, волны не причинят им вреда.
Любопытно, что и задача 22 (винт для Карлсона) тоже решается переходом к динамичной, меняющейся конструкции. Винт должен быть большим в полете и маленьким, когда Карлсон не летает. Для этого лопасти винта надо сделать из тонких пластинок и свернуть их как игрушку «Язык». При вращении винта центробежные силы развернут пластинки, они станут большими. Винт остановится — и пластинки свернутся.
Интересно отметить, что группа изобретателей получила недавно авторское свидетельство на спасательное устройство, в точности скопированное с игрушки «Язык». Длинная эластичная трубка свернута в рулон. Стоит в такую трубку подать сжатый газ, и она быстро развернется и потянется от корабля к утопающему.
Задачи 20 (съемка контурного фильма) и 23 (укладка алмазных зерен), вообще говоря, очень трудны. Но вы знаете правило: в вещество надо добавить ферромагнитный порошок и управлять перемещением вещества с помощью магнитного поля. Вместо шнура берут трубку и наполняют ее ферромагнитным порошком. Или же просто пропитывают нити клеем и обсыпают их железными опилками. Нити укладывают на фанерный щит и управляют ими с помощью сильных магнитов, расположенных позади щита.
С алмазами чуть сложнее. На них приходится напылять тонкий слой железа. А далее все так же: действуют магнитным полем, укладывая пирамидки вершинами вверх.
Эти задачи похожи на задачу 45 об охотнике. Чтобы поле действовало на вещество, надо добавить какое-то другое вещество, умеющее отзываться на действие поля. К охотнику надо добавить еще одно «вещество», восприимчивое к звуковому полю…
В задаче 24 об укладке фруктов надо использовать правило разрушения веполей: между двумя сталкивающимися плодами должно находиться третье вещество, похожее на плод. Например, мягкий шарик. Бросим в коробку десятка два таких шариков, они будут смягчать удары. Коробка установлена на вибрирующем столе, поэтому легкие шарики всегда находятся в верхнем слое, отважно принимая на себя удары падающих плодов.
Тут, правда, возникает вопрос: а как быть с этими шариками, когда коробка наполнится? Не перекладывать же их вручную в следующую коробку… Задачи на перемещение объектов вам хорошо известны. В шарик встраивают магнитную пластинку. Над коробкой помещают электромагнит. Когда коробка наполнится, включают электромагнит, и шарики выпрыгивают из коробки. Конвейер убирает полную коробку и ставит на ее место пустую. Электромагнит выключают, шарики прыгают в коробку, можно подавать плоды.
Задача 32 о железном порошке, засыпанном в полимер, как вы, наверное, заметили, очень похожа на рассмотренный в третьей главе пример со смазкой. И ответ тот же: нужно использовать соединение железа, которое распадается в горячем полимере.
Сложнее задача 38 о нефтепроводе. Жидкости, идущие по трубопроводу «стык в стык», отделяют друг от друга прочным резиновым шаром-разделителем. Что ж, применим оператор РВС. Начнем мысленно уменьшать размеры шара. Вместо одного большого шара — множество футбольных мячей. Или теннисных. Или еще меньше — дробинок… В этой идее уже что-то есть: пробку и в самом деле можно сделать из множества дробинок, плавающих в жидкости. Выдано даже авторское свидетельство на такую пробку. Все логично: жесткая пробка должна смениться пробкой динамичной, это соответствует общей тенденции развития технических систем.
А если продолжить мысленный эксперимент? Перейдем от дроби к еще более мелким частицам — молекулам. Возникает идея пробки из жидкости или газа. Газовая пробка не сможет быть разделителем — нефть пройдет сквозь газ. А вот жидкая пробка возможна. Один нефтепродукт, например, керосин, затем водяная «пробка», а за ней другой нефтепродукт, скажем, бензин. У жидкой пробки огромные преимущества: она никогда не застрянет в трубопроводе и свободно пройдет через насосы промежуточных станций. Но и недостаток у этой пробки существенный. Нефтепродукты, идущие до пробки и после нее, будут проникать в жидкий разделитель. Головная и хвостовая части пробки постепенно смешаются с нефтепродуктами. Отделить эти нефтепродукты от воды трудно, на конечной станции пробку и попавшие в нее нефтепродукты придется выбросить.