Шрифт:
В 1927 году Нильс Бор и Вернер Гейзенберг сформулировали Копенгагенскую интерпретацию, согласно которой квантовая механика описывает не микрообъекты сами по себе, а их свойства, проявляющиеся на макроуровне. Макроуровень, или окружающий реальный мир, создается классическими измерительными приборами в процессе акта наблюдения. Именно акт измерения вызывает мгновенное схлопывание, «коллапс волновой функции».
Копенгагенскую интерпретацию сами физики часто сравнивают с философией епископа Беркли [1], который задавал вопрос: если в лесу падает дерево и вокруг нет никого, кто мог бы это услышать, то производит ли его падение звук? Копенгагенская интерпретация квантовой теории не отвечает на этот вопрос однозначным «да» или однозначным «нет». Ее ответ куда более неприятен, чем сам вопрос: если рядом с деревом никого нет, то это дерево существует как сумма множества различных состояний. Оно может не только расти или падать, но и существовать, например, в виде только что проклюнувшегося ростка, в виде обугленного под ударом молнии столба, в виде поленницы дров или листа фанеры и т.д. Только когда вы смотрите на дерево, его волновая функция чудесным образом схлопывается, превращаясь в конкретный объект.
Твердыни, которые еще совсем недавно казались незыблемыми, прямо на глазах превращались в зыбучие пески. Такое понятное и вполне определенное будущее предсказать уже было нельзя – можно говорить только о вероятности того или иного течения событий. На этом поле вероятностей возникал пусть небольшой, но все же шанс для невероятного – какой-нибудь немыслимой чертовщины, противоречащей здравому смыслу. Квантовая «ересь» взорвала мир физики и расколола его на два лагеря. Вместе с ним вдребезги рушилась вообще вся прежняя мировоззренческая вселенная, требуя философского переосмысления физической реальности. Новый фундаментальный физический принцип, принцип неопределенности, разрушал фундамент детерминизма. Больше не существует ни однозначной определенности в природе, ни высшего промысла – миром правит случайность.
Амбассадорами лагеря сторонников квантовой теории были Бор и Гейзенберг, а противниками оказались Эйнштейн и Шредингер, стоявшие у ее истоков. Признавая несомненные успехи новой теории и даже временами искренне восторгаясь ими, отцы–основатели открыто недолюбливали свое дитя за его непредсказуемый характер. Шредингеру, автору волновых уравнений, применяемых для решения квантовых задач, она не нравилось настолько, что он даже сожалел о своей причастности к ней. В одной из своих статей он отмечает, что квантовая механика «пока всего лишь удобный трюк, который, однако, приобрёл… чрезвычайно большое влияние на наши фундаментальные взгляды на природу». Вечным оппонентом квантовой теории оставался и Эйнштейн. В пылу жарких научных споров он не раз восклицал: «Бог не играет в кости со Вселенной!». Великий ученый не отвергал теорию полностью, но не мог принять ее в качестве окончательного варианта для фундамента физики. Эйнштейну не хватало в ней единства, целостности, полноты картины мира, какого-то скрытого, но очень важного параметра.
В 1935 году после опубликования статьи Эйнштейна–Подольского–Розена о неполноте квантовой механики Шредингер направил Эйнштейну письмо со словами поддержки и в продолжение темы предложил мысленный эксперимент, который наглядно демонстрировал суть проблемы. Эксперимент получил широкую известность как парадокс «кота Шредингера», Иллюстрация 4.
Иллюстрация 4. Кот Шредингера. Кот в условиях квантовой неопределенности. Кот жив или кот мёртв?
Кот помещается в закрытую коробку. За перегородкой находится «дьявольская машина»: счётчик Гейгера, крупинка радиоактивного вещества и синильная кислота. Когда атом вещества распадется, вылетит элементарная частица, счетчик Гейгера сработает и приведет в действие молоточек. Он разобьет колбу с синильной кислотой и кот тут же отравится. Когда вылетит частица никто не знает, но наблюдателю задается вопрос: кот жив или мертв? Так как распад атома – исключительно квантовое событие, то и кота придется описывать как квантовый объект. До тех пор, пока наблюдатель не открыл коробку, кот не жив и не мертв. Он существует в виде сочетания различных квантовых состояний или суммы двух волн. Одна из этих волн описывает мертвого кота, другая – живого. Вероятность 50%, что атом не распался и кот жив, такая же вероятность, что атом распался и кот мертв. Живой и мертвый кот как бы смешаны и равномерно размазаны по объему коробки.
Если следовать копенгагенской интерпретации, единственный способ определить, жив кот или мертв – открыть короб и произвести наблюдение. В этот момент волновая функция схлопнется в мертвого или живого кота. Наблюдение (для которого требуется сознание) будет определять его существование.
По Шредингеру суть эксперимента состояла в том, что неопределённость на квантовом уровне должна привести к неопределённости, размытости в макроскопическом масштабе («смесь» живого и мёртвого кота). Это не соответствует требованию определённости состояний макрообъектов независимо от их наблюдения и, следовательно, не позволяет принять «модель размытости» в качестве реальной картины мира. Эйнштейну эксперимент понравился, хотя он рассматривал его суть несколько по-иному – как возможность статистического описания эксперимента и статистического опровержения копенгагенской интерпретации.
Аргументы Эйнштейна и Шредингера не могли остановить дальнейшее успешное развитие квантовой физики, наоборот, помогли работе над прояснением некоторых принципиально важных её аспектов. Старая копенгагенская интерпретация теории перестала пользоваться популярностью – сегодня она уступила место интерпретации многомировой. В новой трактовке Вселенная расщепляется надвое, где в одной вселенной кот жив, а в другой – мертв. Или на множество вселенных, где кот существует в различных состояниях.
Научная и философская проблема физической реальности так и осталась нерешенной. Кот Шредингера продолжает гулять сам по себе, где и как ему вздумается. Сегодня наука, достигнув фантастических высот, вновь признает, что на трудном пути познания природы ей, как и некогда великому физику, не хватает какого-то неизвестного, но очень важного параметра, позволяющего достичь единой и целостной картины мира. Все больше исследователей, подозревая, что Эйнштейн, возможно, был прав, обращаются к теме единой теории поля. Ученые продолжают поиски, предполагая, что могут существовать пока не обнаруженные элементарные частицы, по своим свойствам не совсем похожие на другие частицы Стандартной модели. Они должны дать возможность найти концы нитей в клубке квантовой запутанности. Поиски недостающих частей системы ведутся в космосе и на ускорителях.