Вход/Регистрация
Data Science. Практика
вернуться

NemtyrevAI

Шрифт:

Обратите внимание, что для использования примера 3 вам потребуется предварительно установить библиотеку NLTK и скачать соответствующие ресурсы для выбранного языка.

Анализ частот словарного запаса

Анализ частот словарного запаса является одним из самых простых и эффективных методов анализа текстовых данных. Мы можем использовать различные библиотеки Python, такие как `nltk` и `collections`, чтобы подсчитать частоту словарного запаса в текстовых данных и вывести самое часто используемые слова.

Пример кода на языке Python, который поможет вам проанализировать частоту словарного запаса:

```python

from nltk.tokenize import word_tokenize

from nltk.probability import FreqDist

def analyze_word_frequency(text):

# Токенизация текста

tokens = word_tokenize(text)

# Вычисление частоты встречаемости слов

freq_dist = FreqDist(tokens)

return freq_dist

# Пример использования функции анализа частоты словарного запаса

text = "Это пример текста. Он содержит несколько слов, и некоторые слова повторяются."

word_freq = analyze_word_frequency(text)

# Вывод наиболее часто встречающихся слов

most_common_words = word_freq.most_common(5)

for word, frequency in most_common_words:

print(f"{word}: {frequency}")

```

В этом примере используется библиотека NLTK. Функция `analyze_word_frequency` принимает текст в качестве аргумента. Сначала текст токенизируется с помощью `word_tokenize`, затем вычисляется частота встречаемости слов с использованием `FreqDist`. Функция возвращает объект `FreqDist`, который представляет собой словарь, где ключами являются слова, а значениями – их частоты встречаемости.

В примере после анализа частоты словарного запаса выводятся пять наиболее часто встречающихся слов и их частоты. Измените число `5` на нужное количество слов, которые вы хотите вывести.

Обратите внимание, что для использования кода вам нужно предварительно установить библиотеку NLTK и скачать необходимые ресурсы, такие как токенизаторы и словари, с помощью функции `nltk.download`.

Еще один пример кода на языке Python для анализа частоты словарного запаса:

```python

from nltk.tokenize import word_tokenize

from nltk.probability import FreqDist

import matplotlib.pyplot as plt

def analyze_word_frequency(text):

# Токенизация текста

tokens = word_tokenize(text)

# Вычисление частоты встречаемости слов

freq_dist = FreqDist(tokens)

return freq_dist

# Пример использования функции анализа частоты словарного запаса

text = "Это пример текста. Он содержит несколько слов, и некоторые слова повторяются."

word_freq = analyze_word_frequency(text)

# Вывод наиболее часто встречающихся слов

most_common_words = word_freq.most_common(5)

for word, frequency in most_common_words:

print(f"{word}: {frequency}")

# Визуализация частоты слов

word_freq.plot(30, cumulative=False)

plt.show

```

В этом примере также используется библиотека NLTK. Функция `analyze_word_frequency` принимает текст в качестве аргумента. Текст токенизируется с помощью `word_tokenize`, а затем вычисляется частота встречаемости слов с использованием `FreqDist`.

Конец ознакомительного фрагмента.

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: