Шрифт:
К помощи этих радиоактивных часов мы обращаемся разными способами. Более обстоятельный рассказ ждет нас в будущих главах. В двух словах, если известно число атомов, существовавших в начальный момент, нужно просто посчитать оставшиеся атомы в момент наблюдения и, зная период полураспада, применить вышеупомянутое уравнение для нахождения T. Например, живое дерево поглощает из воздуха все обычные изотопы Углерода и встраивает их в свои молекулы целлюлозы. После того как дерево срубают, в нем остаются 12C и 13C, а остаток 14С начинает претерпевать полураспад. И если мы найдем бревно, бывшее частью древней постройки, и обнаружим, что в нем присутствует лишь половина от ожидаемого уровня 14С, то мы будем знать, что это дерево срубили 5730 лет тому назад. (В главе 8 мы поговорим об этом подробнее и внесем в этот метод датирования ряд необходимых корректив.)
Бывают случаи, когда изначальное число атомов в интересующем нас объекте неизвестно. Но если мы имеем дело с простой формой распада, при которой один радиоактивный изотоп превращается в один стабильный и ни один из них не содержался в изначальном образце, мы можем просто взять соотношение этих изотопов и считать время с графика, как на рис. 6.5. Это называется «аккумулирующие часы». Если мы не знаем ни числа материнских, ни числа дочерних ядер, можно посчитать их соотношение, найти стабильные изотопы радиоактивных видов и при помощи кривой, известной как изохрона, установить возраст объекта (подробности см. в главе 15). Выбрав изотопы с подходящим периодом полураспада – от сотен до десятков тысяч лет для предметов быта и искусства, от тысяч до миллионов лет – для изучения климата и вплоть до миллиардов лет – для исследования происхождения Солнечной системы и Вселенной, мы получим часы, которые позволят нам определять время на протяжении всей космической истории.
Рис. 6.5. По мере распада материнского ядра количество дочерних ядер возрастает в прямой пропорции. Например, по истечении одного периода полураспада образец будет состоять на 50 % из материнских ядер и на 50 % из дочерних. Если предположить, что ни одно из дочерних ядер не ускользнуло (и что их не было изначально), то мы, измерив точное соотношение материнских ядер к дочерним, получим на временной оси уникальную точку, позволяющую установить возраст образца. В данном случае вертикальная линия пересекается с кривыми в точках, соответствующих 20 % для материнских ядер и 80 % для дочерних, так что возраст образца составляет 2,3 периода полураспада
Выше я упоминал о том, что часы «почти» невозмутимы, но можете свободно игнорировать это «почти» во всех интересных случаях, о которых мы будем говорить. Самое важное исключение – это форма распада, названная захватом электрона. Как мы помним, это происходит, когда один из электронов, перемещающихся по атомной орбите, оказывается слишком близко к ядру и попадает в захват, тем самым нейтрализуя один из протонов и превращая его в нейтрон. Поскольку для того, чтобы один из электронов очутился слишком близко к ядру, у атома в принципе должны быть электроны, то само ядро, которое их захватывает, можно стабилизировать, если ионизировать атом и резко сорвать все электроны с орбит. Есть и не столь драматичный путь – просто изменить орбиты электронов, окружив атом другими атомами или молекулами. Например, период полураспада с захватом электрона у Бериллия-7 удалось продлить на 0,9 %, когда атом 7Be был окружен атомами Палладия3. Однако в большинстве случаев мы будем совершенно счастливы, если ошибка в точности наших датировок не превысит 1 %, так что какого-то повода для тревоги здесь нет. И, наконец, наблюдаемый период полураспада ядра можно поменять, если изменить скорость протекания самого времени – например, ускорив частицу до величин, близких к скорости света, или сумев подвести ее к горизонту событий черной дыры. Согласно теории относительности Эйнштейна, время замедляется в обоих случаях, и вследствие этого нам, наблюдателям, покажется, что полураспад ядра длится дольше. Первый эффект был продемонстрирован в опытах по ускорению частиц; эксперимент с черной дырой пока еще предстоит. Впрочем, ни одно из этих условий не будет иметь отношения к историям, которые мы будем воссоздавать.
Теперь, когда мы сформировали представление о мире субатомных частиц, ядер, атомов и молекул, мы готовы обратиться к помощи этих крошек в нашем проекте. Так пусть же эти истории наконец прозвучат.
Глава 7
О кражах и подделках: судебная история искусств
Ведущие мировые музеи хранят в своих коллекциях средневековые картины, богато иллюстрированные хоровые книги и красочные миниатюры XV века, изображенные, в чем нет сомнений, на 500-летнем дереве, покрывалах и пергаменте. Как могут краски оставаться столь яркими по прошествии половины тысячелетия? Ральф Альберт Блейклок, американский живописец, живший в XIX веке, создал сотни картин, но продавались они настолько плохо, что он впал в тоску и окончил свои дни в государственном приюте. В дальнейшем цены на его произведения взлетели до небес – но все ли они принадлежали его кисти? В 1990-х и начале 2000-х годов на аукционах за общую сумму в $36 млн были проданы примерно пятьдесят произведений, в число создателей которых вошли немецкий сюрреалист Макс Эрнст, экспрессионист Генрих Кампендонк и французский мастер Фернан Леже, а также другие художники первых десятилетий XX века. Какой таинственный коллекционер собрал столь обширную галерею? А в чем загадка кхмерских стражей, в незапамятные времена лишившихся ног? Все это тайны – но их можно раскрыть, если задать вопрос свидетелям-атомам.
Безногие стражи
В конце 1980-х годов, когда Метрополитен-музей впервые приобрел двух коленопреклоненных служителей, их головы были отделены от торсов. Дирекция приобретала все фрагменты, какие было возможно, и со временем, за пять лет, собрала четыре отдельные части, а в 1993 году стражей наконец-то восстановили. Однако найти ноги так и не удалось.
Тем временем Федерико Каро, сотрудник научного отдела музея, изучал песчаные карьеры в центральной Камбодже. Двадцать образцов, взятых из карьеров возле Кохкера, и еще двадцать с лишним с плато Кулен – гор, разделивших Кохкер и Ангкор, – позволили ему оценить крошечные концентрации двадцати трех различных элементов, начиная от номера 4, Бериллия, до номера 92, Урана. Он показал, в чем именно эти следовые элементы были схожи со своими «собратьями» из других песчаных карьеров, откуда брали материал для кхмерских городов и храмов тысячу лет назад. Но кроме того, данные помогли установить, что концентрация, в которой присутствовали элемент номер 21, Скандий, и элемент номер 23, Ванадий, составляла лишь десять и шестьдесят миллионных долей. Эти пропорции слегка отличались от соотношения, характерного для других ангкорских храмов, поэтому можно было предположить, что песок для этих построек поступал из разных карьеров1.
Окрестности Кохкера, расположенные за сто километров от знаменитых храмов Ангкор-Вата, особенно интересны тем, кто изучает историю кхмеров. Сражаясь за власть с другими претендентами на трон – сыновьями прежнего, уже умершего правителя, – Джаяварман IV в 921 году перенес в Кохкер столицу, которая прежде находилась в Ангкоре. Соперники властелина умерли в 928 году, и он правил единолично до самой своей смерти в 941 году. Его детально продуманная новая столица была завершена менее чем за двадцать лет, и это наводит на мысль, что Джаяварман IV располагал немалым капиталом и рабочей силой. Источником сырья для построек и скульптур, украсивших новый город, стали те самые карьеры, в которых Каро спустя долгие столетия добывал свои образцы. Поэтому образец камня, из которого были созданы коленопреклоненные стражи, мог бы пролить свет на их происхождение.
Впрочем, еще до того, как было принято непростое решение отсечь от статуй образец для анализа, вмешалась традиционная археология. Ноги стражей были найдены у западных ворот главного храма в Кохкере. В соответствии с соглашением, подписанным в 2013 году, музей вернул обе статуи, и они могли вновь охранять столицу Джаявармана IV, как делали это на протяжении 1100 лет.
Испанский фальсификатор
В 1930 году Метрополитен-музей планировал совершить серьезную покупку и приобрести одну средневековую картину – «Обручение святой Урсулы». Ее автором считался кастильский художник Хорхе Инглес – по крайней мере, именно так полагал английский историк искусства и бывший директор британской Национальной портретной галереи сэр Лайонел Каст. На картине изображена счастливая чета в окружении многочисленной свиты у древнего замка, а на заднем плане по водной глади плывут корабли. Размеры картины – примерно 76 x 60 см, она нарисована на дереве и отличается характерными трещинами, как и можно ожидать от произведения, которому уже пятьсот лет; во всех иных смыслах она в прекрасном состоянии. За нее запрашивали 30 000 британских фунтов, поэтому, прежде чем дать согласие, попечительский совет Метрополитен-музея решил обратиться за консультацией к независимому специалисту – графу Умберто Ньоли, выдающемуся историку искусства и, по совместительству, агенту музея по закупкам. А уже сам Ньоли обратился к Белль да Коста Грин, которая заведовала библиотекой Моргана, расположенной на Манхэттене, в четырех километрах к югу от Метрополитен-музея.