Вход/Регистрация
Хранители времени. Реконструкция истории Вселенной атом за атомом
вернуться

Хелфанд Дэвид

Шрифт:

Малый ледниковый период, а также температурный минимум в начале 1800-х годов совпали с периодами необычно низкой активности солнечных пятен. Здесь также стоит заметить, что через несколько десятилетий после того, как Галилей открыл темные пятна на поверхности Солнца, они практически исчезли почти на целое столетие. В главе 8 мы уже говорили о том, что менее активное Солнце чуть слабее защищает нас от космических лучей, воздействующих на атмосферу, и это, в свою очередь, влияет на образование радиоактивных изотопов. В частности, содержание относительно долгоживущего изотопа (по сравнению с 14C) Бериллия-10 (10Be), упомянутого в главе 8, можно измерить как во льду, так и в глубоководных кернах. Его пиковые значения в три раза превышают среднее как в XVII веке, так и в первых десятилетиях XIX столетия, когда количество солнечных пятен находилось на самом низком уровне за последние 300 лет16.

Хотя мы знаем, что Солнце примерно на 0,1 % тусклее, когда количество солнечных пятен достигает минимума за одиннадцатилетний солнечный цикл, эта перемена не столь велика, чтобы вызвать глобальное похолодание. Однако климатическая система – сложное явление, и петли обратной связи могут усилить даже небольшие изменения. Например, ультрафиолетовое излучение от активного Солнца может быть на 2–3 % выше (по сравнению с общим изменением интенсивности излучения всего на 0,1 %), а дополнительный озон в верхних слоях атмосферы (O3), производимый этим усиленным ультрафиолетом, способен серьезно изменить характер атмосферной циркуляции и тем самым оказать влияние на климат.

Кроме того, деревья по всему миру помогают нам оценить влияние климата на историю неграмотных народов. Например, на юго-западе Америки соотношение изотопов в древесине позволило понять причину заброшенности жилищ на скалах Меса-Верде. Люди время от времени жили в этих краях, и первые селения возникли еще 10 000 лет назад. Но примерно с 1150 года нашей эры началось масштабное строительство города, руины которого мы видим сегодня, – в нем проживало более 20 000 человек. Как показывает летопись годичных колец, с 1276 по 1289 год нашей эры царила долгая засуха, и ближе к концу этого периода город был заброшен. Обширный город в каньоне Чако, расположенный в ста шестидесяти километрах к югу, с его пятиэтажными жилыми домами на 600 комнат и огромными церемониальными кивами, вмещающими сотни людей, был покинут за столетие до этого. Причиной тому тоже стала засуха, сильнейшая за последние 1200 лет. Она длилась несколько десятилетий, а самое засушливое время пришлось на 1146–1155 годы нашей эры17. Обратите внимание на совпадение этих засух, оказавших решающее влияние на культуру, со Средневековым теплым периодом, о котором говорилось выше.

И в качестве последнего примера того, как получать данные о климате при помощи деревьев, мы упомянем интересную реконструкцию температуры в северной Финляндии, доходящую до 138 года до нашей эры. В ней наблюдается довольно явное понижение в среднем на 0,31 °C за тысячу лет – конечно, до тех пор, пока недавнее быстрое потепление, вызванное деятельностью человека, всего за четыре десятилетия не компенсировало эту тенденцию с избытком18. В дальнейшем мы еще поговорим о том, что долгосрочные климатические сводки, полученные благодаря исследованию льдов Гренландии и Антарктики, позволяют предположить, что нас ждет резкое похолодание в течение следующих десяти тысячелетий. То, что вместо этого мы наблюдаем быстрое потепление, идущее с беспрецедентной скоростью, говорит о масштабах воздействия людей на планету.

Дендрохронология не только играет невероятно важную роль в точном измерении скорости образования 14C, благодаря чему значительно повышается точность радиоуглеродного датирования, но и непосредственно предоставляет данные о климате минувших эпох. Именно поэтому она и сумела обрести столь важную роль в воссоздании мировой истории на протяжении всего развития человеческой цивилизации.

Долгосрочные климатические влияния

Как однозначно показывают приведенные выше данные, деятельность человека существенно меняет температуру нашей планеты. Однако мы знаем, что в прошлом происходили гораздо большие колебания температуры. За последний миллиард лет мы видели и Землю-снежок, почти полностью покрытую льдом, и полностью тропическую Землю с пальмами, растущими в Гренландии. Очевидно, что природные силы тоже могут влиять на энергетический баланс Земли. Поэтому мы, прежде чем пойти дальше, рассмотрим основные причины изменения температуры за последний миллион лет до вмешательства человека.

Движением Земли в космосе управляет гравитационное влияние Солнца. Наша планета совершает полный оборот по своей слегка эллиптической орбите раз в 365,24255 дня. Но Земля и Солнце – не единственные тела в Солнечной системе. Земля испытывает взаимные притяжения и толчки со стороны Луны, Венеры, Юпитера и других планет, что становится причиной едва уловимых и приблизительно периодических изменений в форме ее орбиты, в наклоне оси вращения относительно плоскости этой орбиты и в ориентации ее оси в пространстве (см. рис. 11.2). Величину этих эффектов и их связь с климатом Земли впервые рассчитал сербский инженер, математик и астроном Милутин Миланкович.

За день Земля совершает оборот вокруг оси вращения, направленной в настоящее время на Полярную звезду, но эта ориентация мимолетна. В течение примерно 23 000 лет ось очерчивает круг на небе, подобно тому как колеблется ось волчка, прежде чем тот упадет. Этот динамический эффект называется прецессией. Это было бы ничем не примечательно (если только вы не астронавигатор), если бы орбита Земли не была эллиптической, из-за чего планета в течение года то приближается, то удаляется от Солнца. Времена года определяются тем, какое полушарие наклонено к Солнцу (см. рис. 11.2 а). И если Земля находится ближе к нему, когда к Солнцу наклонено Южное полушарие (как это происходит сегодня), то южные широты получают немного больше энергии, чем Северное полушарие спустя полгода, когда оно наклонено к Солнцу, но находится немного дальше. Учитывая период прецессии, эта ситуация изменится чуть более чем через 11 000 лет, когда Северное полушарие одновременно будет наклонено к Солнцу и ближе к нему в течение лета.

Рис. 11.2. (а) Прецессия равноденствий. Вращающаяся Земля притягивается гравитационным воздействием со стороны Луны, Солнца, Юпитера и других планет, так что ее ось вращения медленно меняет направление, в котором она указывает, точно так же, как вращающийся волчок раскачивается в ответ на гравитационное притяжение Земли. Совокупный эффект этой прецессии состоит в том, что расположение лета и зимы на орбите Земли меняется местами примерно за 11 000 лет, завершая один полный цикл за период от 19 000 до 23 000 лет. (б) Поскольку орбита Земли эллиптическая, прецессия либо усиливает, либо подавляет разницу в получаемом сезонном солнечном свете (подробности см. в тексте). (в) Два других орбитальных эффекта, составляющие циклы Миланковича. Величина наклона орбитальной оси Земли меняется от 22,1° до 24,5° и обратно за 41 000 лет. Более резкие наклоны приводят к более резким сезонным колебаниям. (г) Кроме того, форма орбиты Земли становится более (до 5,8 % отклонения круга) и менее (до 0,5 % отклонения от круга) эллиптической за период, охватывающий примерно 100 000 лет. При более эллиптической орбите возрастает варьирование солнечного света в зависимости от сезона (подробности см. в тексте)

  • Читать дальше
  • 1
  • ...
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: