Вход/Регистрация
Теория пределов и нейросети. Практикум
вернуться

Морозов Николай

Шрифт:

При ( x \neq 1 ), ( x – 1 ) можно сократить:

[ f(x) = \frac{x – 2}{x + 3} ]

Теперь вычисляем предел ( f(x) ) при ( x \to 1 ):

[ \lim_{{x \to 1}} \frac{x – 2}{x + 3} = \frac{1 – 2}{1 + 3} = \frac{-1}{4} ]

Итак, предел функции ( f(x) = \frac{x^2 – 3x + 2}{x^2 + 2x – 3} ) при ( x ) стремящемся к ( 1 ) равен ( \boxed{-\frac{1}{4}} ).Ответ: 1/4.

Другой вариант решения (с помошью ChatGPT):

Для нахождения предела данной функции при x стремящемся к 1, подставим значение x = 1 в функцию:

f(1) = (1^2 – 31 + 2)/(1^2 + 21 – 3) = (1 – 3 + 2)/(1 + 2 – 3) = 0/0

Получили неопределенность вида 0/0. Для определения предела в этом случае, проведем кратное деление многочленов:

(x^2 – 3x + 2) / (x^2 + 2x – 3) = (x-1)(x-2) / (x+3)(x-1) = (x-2) / (x+3)

Теперь можно подставить x=1:

f(x) = (1-2) / (1+3) = -1 / 4

Ответ: Предел функции f(x) при x стремящемся к 1 равен 1/4.

9. Найти предел функции f(x) = ((1 + 3x)^(1/2) – (2x + 6)^(1/2))/(x^2 – 5x) при x стремящемся к 5.

GPTutor

Чтобы найти предел функции ( f(x) = \frac{\sqrt{1 + 3x} – \sqrt{2x + 6}}{x^2 – 5x} ) при ( x ) стремящемся к ( 5 ), мы начнём с проверки, не возникает ли неопределённости. Подставим ( x = 5 ):

Проверим знаменатель:

[ x^2 – 5x = 5^2 – 5 \cdot 5 = 25 – 25 = 0 ]

Знаменатель равен нулю, что означает, что есть неопределённость вида ( \frac{0}{0} ). Для разрешения этой неопределённости применим разложение в ряд Тейлора в окрестности точки ( x = 5 ).

Разложим каждый квадратный корень в ряд Тейлора:

[ \sqrt{1 + 3x} \approx \sqrt{16} = 4 + \frac{3(x – 5)}{4} ]

[ \sqrt{2x + 6} \approx \sqrt{16} = 4 + \frac{x – 5}{4} ]

Теперь подставим разложения в функцию ( f(x) ):

[ f(x) = \frac{\left( 4 + \frac{3(x – 5)}{4} \right) – \left( 4 + \frac{x – 5}{4} \right)}{x^2 – 5x} ]

[ f(x) = \frac{\frac{3(x – 5)}{4} – \frac{x – 5}{4}}{x^2 – 5x} ]

[ f(x) = \frac{\frac{2(x – 5)}{4}}{x^2 – 5x} ]

[ f(x) = \frac{\frac{1}{2}(x – 5)}{x(x – 5)} ]

[ f(x) = \frac{1}{2x} ]

Теперь вычисляем предел ( f(x) ) при ( x \to 5 ):

[ \lim_{{x \to 5}} \frac{1}{2x} = \frac{1}{2 \cdot 5} = \frac{1}{10} ]

Итак, предел функции ( f(x) = \frac{\sqrt{1 + 3x} – \sqrt{2x + 6}}{x^2 – 5x} ) при ( x ) стремящемся к ( 5 ) равен ( \boxed{\frac{1}{10}} ).Ответ: 1/10.

10. Найти предел функции f(x) = (7^x – 3^x)/x при x стремящемся к 0.

GPTutor

Чтобы найти предел функции ( f(x) = \frac{7^x – 3^x}{x} ) при ( x ) стремящемся к ( 0 ), мы можем использовать формулу для предела функции, в которой в знаменателе стоит ( x ).

Прежде чем вычислять, заметим, что подстановка ( x = 0 ) напрямую в функцию даст неопределённость ( \frac{0}{0} ), поэтому используем разложение в ряд Тейлора для функций ( 7^x ) и ( 3^x ) в окрестности точки ( x = 0 ):

[ 7^x \approx 1 + \ln(7) \cdot x ]

[ 3^x \approx 1 + \ln(3) \cdot x ]

Теперь выразим ( f(x) ) с использованием этих разложений:

[ f(x) = \frac{7^x – 3^x}{x} \approx \frac{(1 + \ln(7)x) – (1 + \ln(3)x)}{x} ]

[ f(x) = \frac{\ln(7)x – \ln(3)x}{x} ]

[ f(x) = \ln(7) – \ln(3) ]

Таким образом, предел функции ( f(x) = \frac{7^x – 3^x}{x} ) при ( x ) стремящемся к ( 0 ) равен ( \boxed{\ln\left(\frac{7}{3}\right)} ).Ответ:ln7 – ln3.

Более детальные комментарии к данным решениям, на мой взгляд, не нужны.

Попробуйте самостоятельно найти пределы следующих функции:

1) f(n) = (1 – 2n)/(3n – 2) при n стремящейся к бесконечности. Правильный ответ: – 2/3.

2) f(n) = (n^2 + 1)/(3n – 2) при n стремящейся к бесконечности. Правильный ответ:1.

3) f(x) = 2x/(x^2 – 4) – 1/(x – 2) при x стремящейся к 2. Правильный ответ:1/4.

Решение будет приведено в следующей главе.

Глава 2

Выполнение заданий из главы 1.

1) f(n) = (1 – 2n)/(3n – 2) при n стремящейся к бесконечности. Правильный ответ: – 2/3.

  • Читать дальше
  • 1
  • 2
  • 3
  • 4
  • 5

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: