Шрифт:
К началу 2000-х годов наш цифровой опыт уже определялся алгоритмической фильтрацией. Сайт Amazon еще в 1998 году начал использовать совместную фильтрацию при рекомендациях товаров клиентам. Однако система компании не пыталась обнаруживать сходные профили пользователей, чтобы приблизительно оценивать вкусы, как это делала Ringo; она определяла товары, которые часто покупают вместе, – например, погремушка и детская бутылочка. Статья 2017 года, созданная одним из сотрудников Amazon, описывает подобные предложения на сайте:
На главной странице выделялись рекомендации, основанные на ваших прошлых покупках и просмотренных товарах… Корзина рекомендовала добавить другие товары – возможно, спонтанные покупки, которые делаются в последнюю минуту, а возможно, дополнения к тому, что вы уже рассматривали. По окончании заказа появлялись дополнительные рекомендации, предлагающие заказать товары позже.
Такие алгоритмические рекомендации напоминают полки, расположенные непосредственно перед кассой в супермаркетах, – последний стимул купить товары, которые могут вам пригодиться. Но в данном случае рекомендации подбирались индивидуально для каждого пользователя сайта, и в результате, как утверждала статья, получался “магазин для каждого покупателя”. Amazon обнаружила, что персонализированные рекомендации товаров гораздо эффективнее с точки зрения количества кликов и продаж, чем неперсонализированные методы маркетинга – например, реклама на баннерах и списки наиболее популярных товаров, которые нельзя нацелить столь же точно. Алгоритм рекомендаций продвигал бизнес и оказался удобен для покупателя, который получил возможность находить вещи, о необходимости которых даже не подозревал. (Прямо сейчас главная страница Amazon рекомендует мне мойку с аккумуляторным питанием и японскую сковороду для омлета.)
Первые подобные алгоритмы сортировали отдельные электронные письма, музыкантов (в отличие от конкретных песен), веб-страницы и коммерческие товары. По мере развития цифровых платформ рекомендательные системы переместились в более сложные области культуры и стали оперировать гораздо большими скоростями и объемами, обрабатывая миллионы твитов, фильмов, загруженных пользователями видеороликов и даже потенциальных партнеров на свиданиях. Фильтрация стала стандартным способом работы в интернете.
Эта история напоминает также о том, что рекомендательные системы – это не всезнающие сущности, а инструменты, созданные группами технических специалистов. Они могут ошибаться. Ник Сивер – социолог и профессор Университета Тафтса, изучающий рекомендательные системы. Его исследования посвящены человеческой стороне алгоритмов – тому, что думают об алгоритмических рекомендациях создающие их инженеры. В наших беседах Сивер всегда старался прояснить двусмысленную суть алгоритма, отделяя индивидуальное уравнение от корпоративных мотивов, лежащих в основе его разработки, и конечного воздействия на пользователя. “Алгоритм – это метонимическое обозначение для компаний в целом, – говорил он мне. – Алгоритма Фейсбука не существует; существует Фейсбук. Алгоритм – это способ рассказать о решениях Фейсбука”.
Речь здесь не о технологии – нельзя обвинять сам алгоритм в плохих рекомендациях, как нельзя обвинять мост в его инженерных недостатках. Чтобы огромные хранилища контента на цифровых платформах стали доступными, необходима определенная степень упорядочивания. Негативные аспекты Мира-фильтра, возможно, возникли потому, что технология применяется слишком широко, учитывая скорее интересы рекламодателей, нежели опыт пользователей. Рекомендации в том виде, в котором они сейчас существуют, больше не работают для нас; они вызывают у нас все большее отчуждение.
Мои первые значимые воспоминания о социальных сетях связаны с Фейсбуком, в котором я зарегистрировался после того, как поступил в колледж при Университете Тафтса. Дело было летом 2006 года, и в то время потенциальным пользователям требовался официальный адрес электронной почты в домене. edu, чтобы получить доступ к части платформы, которая относилась к колледжам. Тот первый вариант Фейсбука почти неузнаваем по сравнению с сегодняшней структурой. Аудитория строго ограничивалась; я использовал сеть в основном как средство связи с другими студентами университета. Если сегодня Фейсбук можно сравнить с лихорадочной трассой с выездами и заездами через каждые несколько секунд, то в нулевые годы он больше напоминал школьную комнату отдыха, где одновременно могли общаться лишь несколько человек. Вы создавали профиль, обновляли свой статус в нем, вступали в группы по общим интересам – но не более того.
Фейсбук стал едва ли не первым способом социального общения в интернете. Его предшественниками были Friendster и MySpace. Сервисы обмена сообщениями – Instant Messenger компании AOL и gChat компании Google – обеспечивали увлекательные способы общения с друзьями в режиме реального времени. К 2006 году я уже провел сотни часов на более старых форумах, где обсуждались видеоигры и музыка. Однако именно Фейсбук Цукерберга первым грамотно и последовательно связал онлайн-идентичность с офлайновым миром. Платформа поощряла пользователей использовать свои настоящие имена, а не таинственные псевдонимы, и влияла на реальные планы в маленьком мире колледжа: организацию вечеринок, планирование учебной деятельности и завязывание отношений. Тем самым она проложила путь к распространению социальной жизни в интернете для миллионов, а затем и миллиардов пользователей.
В сентябре 2006 года, вскоре после моего появления в Фейсбуке, там появилось одно из крупнейших нововведений – функция, которая определила его будущее в качестве онлайн-гипермаркета, торгующего всем подряд. Главным атрибутом платформы стала лента новостей, бегущий список обновлений, постов и оповещений. Ею нельзя было пренебречь – как только что построенным шоссе, прорезавшим тихую деревню. “Теперь всякий раз, когда вы входите в систему, вы получаете последние новости, связанные с активностью ваших друзей и социальных групп”, – сообщалось в официальном обновлении Фейсбука.