Шрифт:
пленения кварков). Именно валентные кварки и можно увидеть, просвечивая
адрон быстрыми электронами, передающими адрону большой импульс и (в силу
соотношений неопределенностей) способных глубоко проникнуть в его структуру.
Обнаружение точечных составляющих адрона в опытах такого типа в 1969 году
напоминает о знаменитых результатах Резерфорда, который еще в начале
века по той же схеме нащупал малое в объеме атома положительно заряженное
ядро. Точечные составляющие адронов были названы партонами (от англ,
part - часть), и вскоре выяснилось, что по зарядовым свойствам они хорошо
соответствуют кваркам. Валентные кварки-партоны окружены морем менее
энергичных партонов, которые по мере продвижения к периферии
объединяются в пары и тройки, составляя как бы зародыши новых адронов.
На периферии адрона зародыши формируют виртуальную шубу, по-видимому,
сами немного обрастая собственными "морями". Такие промежуточные
между чистым двух-трех-кварковым зародышем и реальным адроном
состояния называются виртуальными частицами. Виртуальные частицы
чрезвычайно краткоживущие образования и не имеют определенной
массы, но по всем своим зарядовым свойствам они похожи на реальные адроны
(т. е. можно говорить о виртуальном ?-мезоне, К-мезоне, антипротоне и т. п.,
однако именно л-мезоны играют основную роль в виртуальной шубе).
Можно понимать дело так, что виртуальные частицы - это адроны с неполноценной (недоформированной) собственной шубой, или - по-другому - это адроны, чья шуба здорово ободрана в сверхплотной кварк-глюонной среде*. Виртуальный адрон может превратиться во вполне реальный, если исходному адрону сообщить достаточную энергию, чтобы он стряхнул свою шубу. При этом все зародыши или их часть (смотря сколько энергии!) попутно обзаводятся собственными развитыми шубами. По сути, большая интенсивность сильных взаимодействий проявляется в большой вероятности таких превращений в результате столкновений энергичных адронов. Обильное появление новых адронов в соударениях при высоких энергиях (процесс множественного рождения) - одно из интереснейших проявлений микромира.
* Последняя интерпретация связана с экспериментально наблюдаемым явлением - адрон, проходя сквозь большое атомное ядро, лишь первый раз взаимодействует нормально с одним из нуклонов. Второе и последующие взаимодействия резко ослаблены, что можно связывать с разрушением виртуальной шубы налетающего адрона, который просто не успевает ее восстановить (регенерировать до нормального адрона) на малых межнуклонных расстояниях в ядре.
Изображенная здесь картина - это лишь качественные "штрихи к портрету" адронов. Адрон - капризнейший натурщик, искусно скрывающий свой внутренний мир, требующий особых красок и особой живописной техники и вовсе не укладывающийся в привычные рамки атомных и ядерных образов.
2. ВЗАИМОДЕЙСТВИЯ
Современная теория рассматривает три типа фундаментальных сил, на основе которых объясняется строение и эволюция вещества.
Электрослабые взаимодействия. До недавних пор мы знали о двух различных силах природы - электромагнитных и слабых. Первая из них ответственна, например, за строение атомов и излучение фотонов, а вторая за ?-распад (n ( p + e-+?e)и другие процессы такого типа. Интенсивная работа физиков в 60-70-х годах привела к построению единой теории электрослабого взаимодействия. Объединение выглядит особенно естественно, если вспомнить, что еще в середине прошлого века электрические и магнитные явления связывались с различными силами природы, и общая теория электромагнетизма лишь постепенно формировалась в трудах Фарадея и Максвелла. Теперь же оказалось, что слабые силы - своеобразное проявление электромагнетизма на очень малых расстояниях (порядка 10-16 см). Одно из фундаментальных полей - электромагнитное - мы знали давно и даже научились использовать, а три других, соответствующих излучению промежуточных бозонов W+- и Z0, заметили сравнительно недавно в связи с процессами слабых распадов.
Таким образом, современная картина электрослабого взаимодействия основывается на четырех фундаментальных бозонных полях и включает в себя поля лептонов и кварков. Элементарный акт взаимодействия между лептонами и (или) кварками выглядит как обмен одним из бозонов. Такой механизм лежит в основе ныне общепринятой схемы описания актов рассеяния и распадов элементарных частиц - квантовой теории поля. Эта схема, хорошо отработанная в области квантовой электродинамики и ныне успешно включившая в себя описание слабых процессов, считается своеобразной нормой теории фактически той линзой, сквозь которую физики пытаются рассмотреть самые глубокие закономерности микромира.
Сильные взаимодействия. Вступая в область адронов, мы сразу сталкиваемся с проблемами двух уровней - исследованием межкварковых и межадронных сил. Вообще-то соответствующая теория - квантовая хромодинамика (цветодинамика), построенная по образцу электрослабой модели, стремится развить схему, где все процессы хорошо описывались бы взаимодействиями 5 или 6 кварковых и 8 глюонных полей. Межадронные силы должны выводиться из более фундаментальных межкварковых, и все свойства белых адронов следовать из модели цветных кварков и глюонов.
Такой подход многое позволяет сделать, но, к сожалению, далеко не все. Аналогии с предыдущими структурными уровнями - атомномолекулярным и ядерным - довольно быстро выходят из строя при попытках описать адрон в целом, а не только валентные кварки. Суть трудностей весьма грубо можно свести к тому, что при описании адрона (его рождения, гибели, взаимодействия как целого) фактически приходится привлекать картину с очень большим (даже бесконечным) числом кварков и глюонов, причем многочастичные состояния играют принципиальную роль, и не удается ограничиться решением простых двух- или трехчастичных задач.