Шрифт:
Отсюда и берет начало так называемая эра доминирования вещества, которое пока выглядит как примитивная смесь водорода и гелия в пропорции примерно 7 : 3. Первичное фотонное и, видимо, нейтринное излучения, постепенно охлаждаясь, превращаются в реликты - живые памятники великим событиям первых мгновений.
Наступающую эру можно также назвать и космогонической - именно теперь гравитация формирует галактики и звезды.
Но перед обращением к этой очень интересной фазе стоило бы обсудить кое-какие космологические и околокосмологические проблемы.
ЧТО ОЖИДАЕТ ВСЕЛЕННУЮ?
Всякая космологическая теория пытается увязать самые общие свойства распределения материи в сегодняшней Вселенной с картиной, соответствующей наиболее ранним эпохам, но непременно заглядывает и в далекое будущее. Что касается будущего, стандартная модель предлагает на выбор два варианта замкнутый и открытый.
Замкнутая Вселенная похожа на поверхность расширяющегося воздушного шарика, но, разумеется, это лишь двухмерная аналогия. Со временем такая Вселенная должна достичь максимального размера, после чего она будет сжиматься. Для наблюдателя это выглядело бы как постепенное исчезновение красных смещений в спектрах галактик. В какой-то момент они сменились бы постепенно усиливающимися фиолетовыми смещениями.
Температура Вселенной начинает возрастать, что неизбежно ведет к распаду структур - от живых организмов до галактик. Разогревшееся реликтовое излучение вступит во взаимодействие с веществом, обдирая электронные оболочки атомов, распадутся атомные ядра, снова образуется горячая смесь из электронов, фотонов, нейтрино и протонов, появится заметное количество античастиц, потом фотон-лептон-кварковый бульон, и, наконец, за миллионную долю секунды Вселенная уйдет в Сингулярность*.
*В англо-американской литературе этот уход иногда образно именуется Big Crunch - что-то вроде Большого Краха или Большого Треска.
Другой вариант - безграничное расширение Вселенной, когда она будет все более и более остывать, стремясь превратиться в холодное море фотонов и нейтрино с небольшой примесью других частиц. Видимо, сколь-нибудь сложная организация материи должна исчезнуть, и единственной отрадой в этой картине является то, что переход в состояние полного вымораживания будет длиться довольно долго: по разным оценкам от 1030 до 1070 лет.
Выбор между двумя вариантами будущего сводится к оценке современной плотности вещества, вернее, соотношения этой величины с так называемой критической плотностью ( кр = 3H2/8?G ( 4,7.10-30 г/см3 (при Н = 50км/сМпс =1,62.10-18 с-1)*. Если ( > ( кр, то имеет место первый вариант, и расширение неизбежно сменится сжатием. Если то ( ( кр, расширение будет неограниченным.
* Более осторожные современные оценки для Хаббловской функции: Н = 55?75 км/сМпс, что дает несколько большую критическую плотность: ( кр = (0,6?1).10-29 г/см3.
Для пояснения разницы можно использовать аналогию со снарядом, запущенным с Земли. Если начальная скорость не очень велика (не достигает второй космической скорости), то кинетической энергии снаряда не хватит на преодоление тяготения, и он упадет назад или превратится в искусственный спутник. Наоборот, при достаточно большой скорости он будет (без учета влияния других тел Солнечной системы) неограниченно удаляться от Земли. При использовании этой аналогии важно только помнить, что разбегание галактик связано с расширением самого пространства, тогда как "разбегание снаряда и Земли" рассматривается в обычном Ньютоновом пространстве...
Сделать окончательный выбор между двумя вариантами горячего или холодного будущего очень трудно - точность измерения Н и, следовательно, ( кр невелика. Но еще сложней оценить наблюдаемую плотность. Совсем еще недавно данные сводились к ( совр. ~ (2?5).10-31 г/см3, то есть Вселенная скорее соответствовала открытой модели. Однако эта плотность оценивалась преимущественно по запасам звездного вещества в галактиках. Считалось, что реликтовый фон фотонов и нейтрино дает вклад в плотность массы на 3 порядка меньше, и этим вкладом фактически можно пренебречь.
С открытием массы нейтрино ситуация может резко измениться. Если число нейтрино, приходящихся на один протон, сохранится на уровне одного миллиарда, то окажется, что в современную эпоху именно нейтрино дают основной вклад в массу Вселенной, и наблюдаемая плотность подскочит до критической черты*. С другой стороны, немалая доля массы должна быть сосредоточена в темных объектах - выгоревших звездах. Особые надежды возлагаются на черные дыры, которыми могли завершить свой путь многие звезды первого поколения. Систематическое обнаружение такого рода объектов опять-таки позволило бы поднять оценку наблюдаемой плотности. Но, как мы видели в главе 6, независимо от природы скрытой от наблюдения массы, ее уже обнаружили, и ее плотность, скорее всего, в десятки раз превышает ( совр.
*Принимая наиболее вероятную оценку плотности обычного вещества (в = 3.10-31 г/см3, видим, что она соответствует средней концентрации порядка 1 протона в 6 м3. Протон примерно в 30 млн. раз тяжелее нейтрино. Но нейтрино выигрывает бои за Вселенную не массивностью, а массовостью. Концентрация одних только электронных реликтовых нейтрино достигает 150 частиц/см3, т. е. плотность нейтрального вещества ((?e) ~ 8.10-30 г/см (при m(?e) ~ 30 эВ = 5,3.10-32 г) вполне на уровне критической. Если вклад того же порядка дадут другие типы реликтовых нейтрино (??, ??), то сомнений в замкнутости Вселенной не останется. Важно, что уже ?e дают вклад в плотность материи, примерно в 30 раз превышающий вклад обычного вещества - как раз то, что требуется для объяснения скрытых масс.