Шрифт:
происходит разделение электрических зарядов. Под действием возникающего электрического поля плазма медленко движется (дрейфует) в направлении, перпендикуляр! ом магнитному полю и в конце концов соприкасагтся со стенками камеры. Найдены эффективные методы борьбы и против такого явления.
Для проверки теоретических представлений о поведении плазмы в магнитных полях в СССР, США, ФРГ, Англии, Франции и Италии создана целая серия различных экспериментальных установок. Невозможно даже бегло рассмотреть их все. Но с отдельными познакомиться полезно.
Токамаки, стеллараторы и другие
Больше всего собралось различных установок по изучению УТС в Институте атомной энергии. Если с площади И. Курчатова посетитель пройдет на территорию института, то окажется в большом сосновом бору.
Одна из дорог приведет к домику И. Курчатова - "хижине лесника", а в 200 метрах он увидит здание первого в Европе реактора Ф-1, пущенного в 1946 году.
О нем и шла раньше речь. Если пройти еще 200- 300 метров, взору откроется постройка, на фронтоне которой эмблема - рука, держащая солнце. В ней и расположена одна из первых, наиболее крупных термоядерных установок с магнитными зеркалами - ОГРА, разработанная коллективом под руководством советского физика И. Головина. Каков же принцип ее устройства?
В прямой трубе (ее диаметр полтора метра, а длина около 10) создано продольное -постоянное во времени магнитное поле. Для разогрева плазмы в трубу-камеру с помощью специального устройства впрыскиваются ионы молекулярного водорода с энергией, которой соответствовала бы температура в камере около 900 миллионов градусов. Казалось бы, температура более чем достаточная! Однако плотность частиц в камере оказывается очень низкой - в 10 миллионов раз меньше, чем нужно, и столкновения частиц здесь происходят очень редко - термоядерная реакция не развивается.
Многое в этой установке, да и в ее модификации ОГРА-П не удовлетворяло ученых. Тем не менее они шаг за шагом двигались к пониманию тайн плазмы.
Создатели ОГРА, самой крупной в те времена установки, наперед знали, что на полный успех им рассчитывать не стоит. Но жизнь требовала строить и испытывать подобные установки, изучать свои ошибки и идти вперед. "Не делая этого, - писал И. Курчатов, - мы напоминали бы, пользуясь образным сравнением Гегеля, того софиста, который утверждал, что он не войдет в воду, пока не научится плавать".
Примерно таким же путем двигались американские и английские ученые, создавшие несколько установок с магнитными зеркалами - ДСХ, Алиса, Феникс. Несмотря на то, что до сих пор введено и исследовано несколько десятков установок подобного типа, еще не удается достигнуть нужных параметров плазмы. Сейчас ближе других к цели продвинулись установки типа Токамак.
Первые их успехи и международное признание пришли, пожалуй, в 1969 году. Тогда в Институт атомной энергии для совместной работы на советской установке Токамак-3 приехали английские ученые. Вот что писала о результатах этой работы парижская газета "Интернэйшнл геральд трибюн":
"Английские ученые с помощью доставленного в Москву оборудования, весящего пять тонн, проверили сообщение советских специалистов, встреченное на Западе с недоверием, и установили, что русские недооценили свой успех в попытке обуздать "энергию водородной бомбы". Они наглядно доказали, что советская установка, известная под названием "Токамак-3", вырабатывает "нагретый газ", или плазму, которая даже больше отвечает необходимым условиям, чем об этом сообщали русские..."
Чтобы познакомиться с такой установкой, пройдем дальше по территории института. Через несколько минут остановимся у здания с надписью: "Отделение физики плазмы". Рядом с ним большая электрическая подетанция, способная снабжать энергией солидное промышленное предприятие. Здесь она для Токамака.
Да! Сегодняшний физический (заметьте, только физический, а не промышленный и даже не опытно-промышленный) эксперимент по термоядерному синтезу требует для своего проведения больших и сложных установок и огромного количества энергии. Эксперименты стали масштабными и, к сожалению, дорогими.
Откроем дверь в зал: здесь расположена одна из самых современных мощных термоядерных установок - Токамак-10. С галереи зала хорошо видна ее основная часть: внушительный "бублик" диаметром 3 метра является вторичной обмоткой огромного трансформатора.
При пропускании тока через первичную обмотку трансформатора внутри бублика начинается разогрев плазмы. Кроме того, и бублик имеет свои обмотки, создающие в нем продольное магнитное поле.
Под Токамаком еще один зал, невидимый с галереи.