Вход/Регистрация
Информатика, кибернетика, интеллект
вернуться

Пушкин В. Г.

Шрифт:

Повторение некоторых черт может произойти также на четвертой, пятой, шестой и последующих ступенях развития. Что же понимается под ступенью развития при формулировке закона отрицания отрицания? Весьма часто считается, что это определенное качественное состояние развивающегося объекта и поэтому речь идет о повторении на высшей ступени некоторых черт (свойств) качественной определенности исходной ступени.

Переход от одного качественного состояния к другому не всегда совпадает с этапом разрешения противоречий, свойственных развивающемуся объекту. На предшествующем этапе развертывания противоречий может происходить ряд качественных изменений. Они имеют место уже в период превращения различий в противоположности, становления связей между последними и обретения ими системного характера взаимодействия и взаимного отрицания. В рамках единства, взаимосвязи противоположностей (и доминирования одной из них) развивающийся объект может претерпеть некоторые качественные изменения без разрешения противоречий. Оно, а значит снятие единства, обязательно совпадает с качественным изменением, причем последнее носит уже коренной, фундаментальный характер.

Наличие серии качественных изменений в процессе полного цикла становления и разрешения противоречий объясняет, почему отрицание отрицания обычно не сводится к триаде (тезис - антитезис - синтез) и не обязательно следует этой формализованной схеме. В соответствии с ней повторение некоторых черт исходной ступени должно было бы происходить всегда на третьей ступени развития. Между тем рассмотренная выше "асинхронность" единовременного действия закона единства и борьбы противоположностей и закона взаимосвязи качественных и количественных изменений нарушает формальную схему отрицания отрицания. Определенный возврат к исходному пункту наступает лишь тогда, когда изменение качественного состояния (ступени развития) совпадает с этапом разрешения противоречий. Именно этим объясняются и факт генетического отражения одной ступени развития в другой, и существование ряда промежуточных этапов, где нет такого отражения как повторения (но есть другие процессы генетического отражения).

29

Наличие процессов не только обычного (назовем его структурным, или функциональным), но и генетического отражения позволяет далее использовать информационные представления для понимания процессов изменения объектов, их развития, подходя к информации как к определенной стороне отражения. Несмотря на обилие различных концепций информации, приходится признать, что пока лишь концепция информации как отраженного разнообразия дает возможность широко использовать ее для изучения процессов изменения и развития. Это, должно быть, произошло потому, что сторонники иных концепций информации почти не рассматривали вероятность использования их для анализа процессов изменения и развития [44]. Между тем концепция, в соответствии с которой информация представляется как сторона отражения, характеризующая его разнообразие, широко применяется в анализе процессов развития в природе и частично - в обществе. В рамках этой концепции был сформулирован так называемый информационный критерий развития [45].

Особенность концепции отраженного разнообразия заключается не только в определенной концептуальной разработанности ее применения к процессам развития, но и в том, что на ее основе возможно измерение ряда параметров развития, и в принципе получение некоторых его теоретико-информационных критериев, ибо эта концепция основана не только на соображениях чисто философского характера, но и на обобщениях всех существующих математических вариантов теории информации и их использования в других науках. Концепция информации на базе отражения и разнообразия широко используется, как мы уже не раз отмечали, в информационной теории управления. Более того, определение понятия информации как отраженного разнообразия оказалось непосредственным "идейным вдохновителем" наиболее общего современного математического обобщения понятия информации с помощью теории категорий, осуществленного в работе А. А. Шарова [46].

Эксплицируя с помощью математической теории категорий данное в философских исследованиях понятие информации как отраженного разнообразия, А. А. Шаров отмечает, что "с математической точки зрения информация - это некоторый класс отображения, или морфизмов... Мы будем говорить об информации лишь тогда, когда при отображении сохраняется старая структура" [47]. Какие же структуры имеются в виду? Что касается теории Шеннона, то здесь выступают некоторые структуры с вероятностной мерой, в топологической теории информации Н. Рашевского - это графы, в алгоритмической теории информации А. Н. Колмогорова - определенная последовательность букв и т.д. Все это свидетельствует о необходимости экспликации категории информации на наиболее общем уровне математической

30

структуры, об определенной независимости понятия информации от конкретного вида объектов, относительно которых она определяется и измеряется.

"Единственной математической теорией, - подчеркивает А. А. Шаров, которая не налагает никаких ограничений на природу объектов, является теория категорий" [48]. Объектами этой теории могут быть теоретико-порядковые структуры, топологические пространства, универсальные алгебры, множества. Для теории категорий важно лишь то, чтобы каждая пара объектов (элементов) характеризовалась некоторым множеством отображений (морфизмов). Информация при этом теоретико-категориальном подходе к ее экспликации может быть охарактеризована как мономорфизм, то есть как отображение, при котором сохраняется разнообразие прообраза. Если же разнообразие при мономорфном отображении не сохраняется (например, в том случае, когда буквы текста отображаются инъективно, но все образы оказываются неразличимыми), происходит его потеря, то такое отображение не является отображенным разнообразием, то есть информацией.

А. А. Шаров вводит понятие количества информации морфиама, позволяющее установить количество информации, необходимой для того, чтобы осуществить данный морфизм, и на основе этого - измерение ценности информации. Показано, что подобный подход при определении количественных характеристик информации и при надлежащих условиях приводит к формулам вероятностной теории информации.

Предложенный теоретико-категориальный подход является, по-видимому, наиболее общим математическим подходом, сформировавшимся на основе философско-методологической концепции информации как "отраженного разнообразия". Наиболее общий математический подход получен, как видим, в рамках общего философского подхода к определению понятия информации, имеет с ним непосредственную методологическую корреляцию. Развитие теоретико-категориальных представлений об информации позволяет не только обобщить все математические определения понятия информации, но и прибегать к ним в исследовании процессов развития, в частности биологического (для изучения, например, гомологий). Но поскольку в этом подходе вводится и понятие ценности информационных свойств (то есть селективной ценности М. Эйгена, или информации как избирательного взаимодействия С. Фокса, или эволюционной информации А. П. Руденко), то данный подход к информации может использоваться в концепциях предбиологической и биологической эволюции [49].

Разработанные математические методы измерения разнообразия отражения дают возможность исследовать его изменение в процессах развития и тем самым осуществлять не только качественную, но и количественную оценку уровня, степени и темпов развития интересующих нас систем. Конкретные примеры при

31

водятся нами в уже упоминавшихся работах, посвященных информационному критерию развития. При этом приходится делать определенную экспликацию понятия развития под "информационным углом" зрения: именно развитие систем рассматривается как изменение (отражение) составляющего их разнообразия одного состояния (ступени развития) объекта по отношению к другому состоянию (ступени развития).

  • Читать дальше
  • 1
  • ...
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: