Шрифт:
Существенным недостатком аналогии с конькобежцами является то, что обмен шарами для боулинга всегда приводит к «отталкиванию»: он увеличивает расстояние между конькобежцами. С другой стороны, две частицы, несущие противоположный заряд, также взаимодействуют между собой, обмениваясь фотонами, но результирующая электромагнитная сила является притягивающей. Это выглядит так, как если бы фотон был переносчиком не взаимодействия как такового, а скорее послания о том, как получатель должен реагировать на соответствующее взаимодействие. Частицам, несущим одноименный заряд, фотон передает сообщение «отдаляйтесь», а частицам с разноименным зарядом — «сближайтесь». По этой причине фотон иногда называют частицей-посланником электромагнитного взаимодействия. Аналогичным образом глюоны и слабые калибровочные бозоны являются частицами-посланниками сильного и слабого атомного взаимодействия. Сильное взаимодействие, которое удерживает кварки внутри протонов и нейтронов, возникает за счет обмена глюонами между кварками. Можно сказать, что глюоны создают «клей», удерживающий эти субатомные частицы вместе. Слабое взаимодействие, отвечающее за некоторые виды превращений частиц при радиоактивном распаде, передается посредством калибровочных бозонов слабого взаимодействия.
Вы, наверное, уже заметили, что в нашем обсуждении квантовой теории взаимодействий в природе не упоминается гравитация. Зная, что у физиков имеется подход, который они успешно использовали для трех других взаимодействий, вы можете ожидать, что они пытались разработать квантово-полевую теорию гравитационного взаимодействия, в которой частицей, передающей гравитационное взаимодействие, будет наименьший сгусток гравитационного поля, гравитон. На первый взгляд это предположение кажется особенно уместным в силу того, что квантовая теория трех негравитационных взаимодействий выявила волнующее сходство между ними и свойством гравитационного поля, с которыми мы столкнулись в главе 3.
Вспомним, что гравитационное взаимодействие позволяет объявить, что все наблюдатели — независимо от состояния движения — являются абсолютно равноправными. Даже те, движение которых кажется нам ускоренным, могут заявить, что находятся в состоянии покоя, поскольку могут приписать испытываемую ими силу действию гравитационного поля. В этом смысле гравитация налагает симметрию: она гарантирует равноправие всех возможных точек зрения и всех возможных систем отсчета. Сходство с сильным, слабым и электромагнитным взаимодействиями состоит в том, что они тоже связаны с симметриями, хотя эти виды симметрии значительно более абстрактны по сравнению с той, которая связана с гравитацией.
Для того чтобы получить общее представление об этих достаточно тонких принципах симметрии, рассмотрим один важный пример. Как указано в таблице, содержащейся в примечании [3] к главе 1, каждый кварк может быть окрашен в один из трех «цветов» (вычурно названных красным, зеленым и синим, хотя это не более чем условность и не имеет никакого отношения к цвету в обычном понимании этого слова). Эти цвета определяют его реакцию на сильное взаимодействие точно так же, как электрический заряд определяет реакцию на электромагнитное взаимодействие. Все полученные к настоящему времени данные свидетельствуют о том, что между кварками наблюдается симметрия: все взаимодействия между одноцветными кварками (красного с красным, зеленого с зеленым или синего с синим) являются идентичными, как и идентичными являются взаимодействия между разноцветными кварками (красного с зеленым, зеленого с синим или синего с красным). На самом деле факты еще более поразительны. Если три цвета, т.е. три различных сильных заряда, сдвинуть определенным образом (грубо говоря, если на нашем вычурном цветовом языке красный, зеленый и синий изменятся и станут, например, желтым, индиго и фиолетовым), то даже если параметры сдвига будут меняться от одного момента времени к другому и от точки к точке, взаимодействие между кварками останется совершенно неизменным. Рассмотрим сферу: она является примером тела, обладающего вращательной симметрией, поскольку выглядит одинаково независимо от того, как мы вращаем ее в руках и под каким углом на нее смотрим. Аналогично можно сказать, что наша Вселенная обладает симметрией сильного взаимодействия: физические явления не изменятся при сдвигах зарядов этого взаимодействия — Вселенная совершенно не чувствительна к ним. По историческим причинам физики говорят, что симметрия сильного взаимодействия является примером калибровочной симметрии. [41]
3
Таблица справа — расширенный вариант табл. 1.1. В нее входят массы и константы взаимодействия элементарных частиц всех трех семейств. Кварк каждого типа может обладать тремя значениями сильного заряда, которые названы (довольно причудливо) цветами. Приведенные значения константы слабого взаимодействия представляют собой, строго говоря, «третью компоненту» слабого изоспина. (Мы не привели «правосторонние» компоненты частиц — они отличаются отсутствием заряда слабого взаимодействия.)
Частица | Масса* | Электрический заряд** | Заряд слабого взаимодействия | Заряд сильного взаимодействия |
---|---|---|---|---|
Семейство 1 | ||||
Электрон | 0,00054 | – 1 | – 1/2 | 0 |
Электронное нейтрино | <10– 8 | 0 | 1/2 | 0 |
u– кварк | 0,0047 | 2/3 | 1/2 | красный, зеленый, синий |
d– кварк | 0,0074 | – 1/3 | – 1/2 | красный, зеленый, синий |
Семейство 2 | ||||
Мюон | 0,11 | – 1 | – 1/2 | 0 |
Мюонное нейтрино | <0,0003 | 0 | 1/2 | 0 |
c– кварк | 1,6 | 2/3 | 1/2 | красный, зеленый, синий |
s– кварк | 0,16 | – 1/3 | – 1/2 | красный, зеленый, синий |
Семейство 3 | ||||
Тау-частица | 1,9 | – 1 | – 1/2 | 0 |
Тау-нейтрино | <0,033 | 0 | 1/2 | 0 |
t– кварк | 189,0 | 2/3 | 1/2 | красный, зеленый, синий |
b– кварк | 5,2 | – 1/3 | – 1/2 | красный, зеленый, синий |
* В единицах массы протона.
** В единицах заряда протона.
41
Для математически подготовленного читателя заметим, что принципы симметрии, используемые в физике элементарных частиц, обычно основаны на группах, чаще всего на группах Ли. Элементарные частицы систематизируются по представлениям различных групп; уравнения, описывающие эволюцию частиц во времени, должны удовлетворять соответствующим преобразованиям симметрии. Для сильного взаимодействия такой группой симметрии является группа SU(3) (аналог обычных трехмерных вращений, но в комплексном пространстве), при этом три цветовых заряда кварка заданного типа преобразуются по трехмерному представлению. Смещение (от красного, зеленого, синего к желтому, индиго и фиолетовому), которое упомянуто в тексте, если быть более точным, представляет собой SU(3) преобразование, примененное к «цветовым координатам» кварка. Калибровочной является симметрия, в которой групповые преобразования могут зависеть от точек пространства-времени: в этом случае «вращение» цветов кварка будет происходить по-разному в различных точках пространства и в различные моменты времени.
Здесь следует подчеркнуть один существенный момент. Как показали работы Германа Вейля 1920-х гг., а также работы Чень-Нин Янга и Роберта Миллса 1950-х гг., аналогично тому, что симметрия между всеми возможными точками наблюдения в общей теории относительности требует существования гравитационной силы, калибровочная симметрия требует существования других видов сил. Подобно тому, как чувствительная система контроля параметров окружающей среды поддерживает на постоянном уровне температуру, давление и влажность воздуха путем компенсации внешних воздействий, некоторые типы силовых полей, согласно Янгу и Миллсу, обеспечивают компенсацию сдвигов зарядов сил, сохраняя неизменность физических взаимодействий между частицами. В случае калибровочной симметрии, связанной со сдвигом цветовых зарядов кварков, требуемая сила представляет собой не что иное, как само сильное взаимодействие. Иными словами, если бы не было сильного взаимодействия, физика могла бы измениться при упомянутом выше сдвиге цветовых зарядов. Это показывает, что хотя гравитационное и сильное взаимодействия имеют совершенно различные свойства (вспомним, например, что гравитация гораздо слабее сильного взаимодействия и действует на гораздо больших расстояниях), они, в определенном смысле, имеют общее происхождение: каждое из них необходимо для того, чтобы Вселенная обладала какой-то конкретной симметрией. Более того, аналогичные рассуждения, примененные к слабому и электромагнитному взаимодействиям, показывают, что их существование также связано с некоторыми видами калибровочной симметрии — так называемой слабой и электромагнитной калибровочной симметриями. Таким образом, все четыре взаимодействия непосредственно связаны с принципами симметрии.
Эта общая характеристика всех четырех взаимодействий, казалось бы, говорит в пользу предположения, сделанного в начале настоящего раздела. А именно, в наших попытках объединить квантовую механику и общую теорию относительности мы должны вести поиск в направлении квантово-полевой теории гравитационного взаимодействия, следуя примеру успешной разработки квантово-полевых теорий трех других видов взаимодействия. На протяжении многих лет эта логика вдохновляла группу выдающихся физиков на разработку такой теории, однако путь к ней оказался усеян препятствиями, и никому не удалось пройти его полностью. Попытаемся понять почему.
Обычной областью применения общей теории относительности являются огромные, астрономические масштабы расстояний. Согласно теории Эйнштейна, на этих масштабах отсутствие масс означает, что пространство является плоским, как показано на рис. 3.3 . Пытаясь объединить общую теорию относительности и квантовую механику, мы должны резко изменить фокусировку и исследовать свойства пространства в микроскопическом масштабе. Мы продемонстрировали это на рис. 5.1 путем последовательного увеличения масштаба и перехода к уменьшающимся областям пространства. По мере того, как мы увеличиваем масштаб, на первых порах не происходит ничего особенного; можно видеть, что на первых трех уровнях увеличения на рис. 5.1 структура пространства сохраняет свои основные свойства. Если подходить с сугубо классической точки зрения, мы могли бы рассчитывать на то, что такая спокойная и плоская структура пространства будет сохраняться все время, вплоть до любого, произвольно малого масштаба расстояний. Однако квантовая механика радикально меняет эту картину. Объектом квантовых флуктуации, управляемых соотношением неопределенностей, является все — даже гравитационное поле.
Рис. 5.1. Рассматривая область пространства при все большем увеличении, можно исследовать свойства пространства на ультрамикроскопическом уровне. Попытки объединить общую теорию относительности и квантовую механику наталкиваются на кипящую квантовую пену, проявляющуюся при самом большом увеличении.
Хотя классическая теория говорит, что гравитационное поле в пустом пространстве равно нулю, квантовая механика показывает, что оно будет нулевым в среднем, а его текущее значение будет изменяться за счет квантовых флуктуаций. Более того, соотношение неопределенностей говорит нам, что размер флуктуации гравитационного поля будет возрастать при переходе ко все меньшим областям пространства. Квантовая механика показывает, что никому не нравится, когда его загоняют в угол; уменьшение пространственной фокусировки ведет к росту флуктуаций. Поскольку гравитационное поле проявляется в кривизне пространства, эти квантовые флуктуации выражаются в его чудовищных деформациях. Мы можем наблюдать проявление таких деформаций на четвертом уровне увеличения на рис. 5.1. При переходе к еще меньшему масштабу расстояний, такому, как на пятом уровне рис. 5.1, мы видим, что случайные квантово-механические флуктуации гравитационного поля соответствуют такому сильному искривлению пространства, что оно совсем перестает напоминать мягко искривленные геометрические объекты типа резиновой пленки, которую мы использовали в качестве аналогии в главе 3. Скорее оно принимает вспененную, турбулентную и скрученную форму, показанную в верхней части рисунка. Джон Уилер предложил для описания такого хаоса, обнаруживаемого при изучении ультрамикроскопической структуры пространства (и времени), термин квантовая пена — описывающий незнакомую нам область Вселенной, в которой обычные понятия «налево и направо», «вперед и назад», «вверх и вниз» (и даже «до и после») теряют свой смысл. Именно на таких малых расстояниях мы сталкиваемся с фундаментальной несовместимостью общей теории относительности и квантовой механики. Понятие гладкости геометрии пространства, являющееся основным принципом общей теории относительности, рушится под напором неистовых флуктуации квантового мира, существующих в масштабе ультрамикроскопических расстояний. В ультрамикроскопическом масштабе основное свойство квантовой механики — соотношение неопределенностей — вступает в прямое противоречие с центральным принципом общей теории относительности — гладкой геометрической моделью пространства (и пространства-времени).